1.0

2.0

MICHIGAN STATE UNIVERSITY
COMPUTER LABORATORY
6000 SCOPE MEMO NO. 135.1

FEBRUARY 28, 1979

INTERACTIVE SUBSYSTEM

INTRODUCTION

The interactive subsystem is responsible for all interactive jobs.
It must coordinate activities for the MISTIC2 users, the FREND 7/32
system and the 6500 operatinag system. MANAGER is the major
component, which oversees the needs of all interactive jobs and
satisfies those needs or directs others to. MANAGER also
communicates with the FREND system via 1FP and a set of control
ports.

In addition to managing interactive jobs, MANAGER drives several line
printers connected to the front-end. MANAGER's function for the
printers is to get print files from ECS (with help from MAN), read
the files in such a way that the dayfile will be printed first. and
perform various file positioning commands for FREND. FREND is the
supervisor for batch print; MANAGER is a slave processor.

This voids 6SM number 47. MSX., and sections 4.2, 4.4.3-4.4.5 of 6SM
number 60. HUSTLER 2. (interactive core).

EXTERNAL REFERENCE SPECIFICATIONS

The primary external user documentation for the interactive subsystem

is Interactive System User's Guide. chapters 2 and 5.

2.1 MANAGER COMMANDS

MANAGER recognizes the following commands as EDITOR commands:

OoLD SCRATCH SYSTEM
SAVE LIST RESEQ
MERGE TAB TABCH

Copyright. 1979. Michigan State University Board of Trustees

Lo

USE bup
MARGIN LENGTH
MOVE READ
EDSTAT EWFLOCK
COMP COMPX
SET STRING
BATCH LISTF
FTN COBOL

These commands will be sent to EDITOR unless they are prefixed
with a “$", then MANAGER will interpret them as SCOPE commands.

DELETE
INSERT
PUNCH
FOLD
COMPER
FORMAT
GO
BASIC

6SM no. 135.1

Page

The following are MANAGER commands for which MANAGER must do

some processing. Then EDITOR or another SCOPE routine may be
called in to complete the processing of the command.

EOT LOGOUT
OK READY
MISTIC END
TAPE TAPEC
READPT TPREAD
N

MAN FUNCTIONS

The format of the MAN calls is:
18/3LMAN.1/I§.5/0.12/FUNC,2M/PARAMETER ADDRESS

where IB is the internal bit (set for function 6).

FUNC is the function number.

PARAMETER ADDRESS is the parameter address (MANAGER's RA for

function 6).

Parameter word (functions 1-5 only):

42/STUFF,11/USER,1/CB

where STUFF is dependent on the function,

USER is the user number and
CB is the complete bit.

Function 6 (MISTIC2 idledown) does not use a parameter word.

Function 7 (zet an output file) uses a lY-word block:

3/0. 3/flags, 18/PRU1. 6/0. 18/PRU2. 6/char, 5/code. 1/CB

2

2.3

6SM no. 135.

Page
6070
60/0
60/0
Flags = printer type bits for CE.LISP call
PRU1 = first PRU limit
PRU2 = second PRU limit
char = routing character for print file
code = 2 for print output
CB = complete bit

On exit, the 4d-word block looks like this:

36/0, 12/FNT address. 12/1
60/FNT1
60/FNT2
60/FNT3

If no file was found. only the complete bit is set. If a file
is found. its FNT address is returned in the first word,
followed by the 3-word FNT image.

Function 8 (re-queue an output file) uses a 5-word block:

42/file name, 6/new queue. 11/code, 1/complete bit
60/unused

60/unused

60/unused

12/FNT address, U48/unused

iNew queue® is the source character for the output queue that
the file is to be put on. "Code" is 1 to return (unload) the
file, or 2 to re-gueue it.

EBONT END COMMANDS

Front End commands can be issued either by the users at their
interactive terminals or from a running program on the 6500.
The PP routine FER was written for the Front End project to
accept a Front End command from a CPU program and via a stack
request. send it to the 7/32. A control card callable routine.
a FORTRAN callable function, and user macros were written to
call FER to issue the Front End command.

2.3.1 FER
The format of the FER call is:

18/3LFER,6/20B, 12/FUNCTION,6/0,18/PARAMETER: ADDRESS

FER must be called with recall.

1
3

2.3.2

2.3.3

2.3.4

6SM no. 135.1
Page y

Function 1 is used to transmit Front End commands from
the 6500 to FREND. The command and its associated
oharaoter code are specified aa follows in the parameter
word :

24/0,12/LENGTH, 12/CODE, 11/ERROR. 1/0

with the command following the parameter word.
the LENGTH of the command is in CM words and
the CODE is the character code in displav code.

ERROR is the Front End error code and is returned to the
caller.

FECMD CONTROL CARD
FECMD,COMMAND .

where COMMAND is the Front End command without the Front
End command character.

EECMD FORTRAN FUNCTION N

The FECMD function call format is as follows:
EC = FECMD(COMMAND[.CODE])

FECMD is a real function. The CODE is an optional 2
character connect type. If it is not specified. OM is
assumed. The COMMAND is either a hollerith string or an
array containing either display code or ASCII characters,
terminated by either an end-of-line bvte of binary zero
or the ASCII equivalent of 4000B.

This function returns the Front End error code to the
caller.

EECMD MACROS

FECMD user macros were installed in both SYSTEXT and
CPUTEXT. The format of the call follows:

FECMD PARAM

where PARAM is the address of the FER parameter word (see
section 2.3.1) .

o

6SM no. 135.
Pace

2.4 SEICODE

SETCODE will change the character code of a file without
modifying the file's connected/non-connected status. SETCODE is
available as a control card callable routine. a FORTRAN callable
function and a macro call (in both CPUTEXT and SYSTEXT).

2.4.1

2.4.2

2.4.3

CON CALLING SEQUENCE

CON was modified to accept a SETCODE parameter in its
input register. Format of the input register is as
follows:

18/3LCON.6/RCL.12/TYPE,5/S.1/FLAG, 18/PARADDR

where RCL is an optional recall parameter,

TYPE is 0 if connect. non-zero if discont,

S is 1 if SETCODE function, else ignored,

FLAG is zero if code is to be ignored.

PARADD is the parameter word address.

Parameter word format:
42/FILENAME,6/0,11/CODE, 1/CB

FILENAME is the local file name,

CODE is the 2 letter connect tyvpe.
CB is the complete bit.

SETCODE CONTROL_CARD
The SETCODE control card syntax is as follows:
SETCODE ,LFN=CC[.LFN1=CC...].

where LFN is the local file name and
CC is the character code.

SETCODE FORTRAN FUNCTION
SETCODE(LFN,2LCC)

where LFN is the local file name and
CC is the new character code.

If CC is omitted then 01d Mistic is used.

1
5

6SM no. 135.
Page

2.4.4 SETICODE _MACROS

SETCODE macros were added to both SYSTEXT and CPUTEXT.
The format of the macro calls:

SETCODE LFN,CC,R

where LFN is the address of a parameter word containing
the local file name (left justified).

CC is a 2 letter character code.

R is an optional recall parameter.

A character code may be preset in the parameter word. If
CC is omitted, then the preset value is not destroyed.

If there is no preset value and CC is omitted. the
default connect type is used by CON.

2.5 SPOOLED INPUT/QUIPUT

2.5.1

2.5.2

2.5.3

READPT
READPT,LFN[.CC][.NR].

where LFN is the local file name.
CC is an optional character code.
NR is an optional no rewind parameter.

MANAGER will spool incoming lines to TTYTTY using CC as
the character code. The CPU routine SPOOL will copy
TTYTTY to the specified file, rewinding the file unless
NR is specified.

IPREAD

TPREAD.LFN[.CC][,NR].

TPREAD is identical to READPT (section 2.5.1) except
MANAGER issues Front End commands READER,ON at the

beginning of the spooling process and READER,OFF at the
end.

WRITEPT
WRITEPT ,LFN[.CC][.NR].
where LFN is the local file name,

CC is an optional character code, and
NR is an optional no rewind parameter.

1
6

6SM no. 135.1
Pare T

WRITEPT will copy the local file name to TTYTTY. If CC
is specified. the character code of TTYTTY is changed to
CC. MANAGER will then list TTYTTY to the user's terminal
in that character code. If the NR parameter is
specified, WRITEPT will not rewind the local file before
copying it to TTYTTY.

2.6 MSO CALLING SEQUENCES

MSO is used to issue messages to a user's line. There are three
calling sequences. Two are for MSG. The other is for CPU
routines. The system routines SEND and MESSAGE are the primary
users of the CPU calling sequence.

2.6.1 USER_CALL
MSO calling sequence for a user call:
input register -
18/Ms0.1/0,1/R.1/0.3/CP.12/N,2/0,4/B,18/ADD

where R is the recall parameter,

CP is the control point assignment,

N is the receiving line's user number,

B is bounce information for the refusable request.
ADD is the address of the parameter word. '

parameter word layout -
10/0,1/REF,1/AS.1/REP.6/0.18/MADD.11/C,1/CB

where REF is the refusable reaquest parameter,

AS is set if the messare is in ASCII,

REP is set if the request was refusable and MSO could
not send the message.

ADD is the address of the message,

C is the character count of the messare,

and CB is the complete bit.

Sending a message to another user's line is restricted to
system library routines. A user number of zero is
interpreted as the caller's user number.

The refusable call allows system routines (SEND and
MESSAGE) to be told (via the REP field) -that a line was
busy and the message could not be sent. Previously, the
caller would swap out waiting output (WT.OUT) on the
receiver's line. With this interactive system, MANAGER
is told when a specific user's line is ready for more
output and MANAGER frees that user if necessary. It does
not scan the entire pool looking for lines which are now

6SM no. 135.1
Page 8

ready for more output and those waiting to be freed, as
1BR did.

Messages can be in either display code or ASCII. Display
coded messazes are packed 10 characters per CM word.

while ASCII are 5 characters ver CM word. The AS
parameter specifies which character code is being used.

2.6.2 MSG CALL WITH RECALL

MSO calling sequence for a MSG call with recall:

input register -
18/MS0.1/1,2/0,3/CP.13/0,1/AR,4/0.18/PADD

where CP is the control point assignment,
AR is the MSG auto-recall flag (set).
PADD is the address of the parameter word.
parameter word layout -

12/0,18/MADD.29/0,1/CB

where MADD is the address of the message,
and CB is the complete bit.

2.6.3 MSG CALL WITHOUT RECALL
MSO calling sequence for a MSG call without recall:

input register -
18/Ms0,1/1.,2/0,3/CP.13/0.1/AR,4/0,18/MADD

where CP is the control point assignment,
AR is the auto-recall flag from MSG (zero)
MADD is the address of the message.

2.7 MSX CALLING SEQUENCES

MSX has two calling sequences. One is for normal errors. which
is Just specified by an error number (F.ERRXX) and/or a
secondary error number. The other is for mode errors.

The secondary error number is used to select a particular I/0
error message when the primary error flag is F.ERIO or E.b6ES.

6SM no. 135.
Page

2.7.1 NQRMAL ERRORS
Input register lavout for normal errors -
18/3LMSX,1/1.2/0.3/CP.1/MD.5/0,12/SEC.6/ERR,12/USER

where CP is the control point assignment,

MD is the flag which distinguishes mode errors (clear),
SEC is the secondary error flag.

ERR is the primary error flag,

USER is the user number.

2.7.2 MODE ERRORS

Input register layout for mode errors -
18/3LMSX.1/1,2/0,3/CP.1/MD.5/MDERR, 18/ADDR, 12/USER

where CP is the control pnoint assignment,
MD is the mode error flag (set),

MDERR is the mode of the error,

ADDR is the address of the mode error,
USER is the user number of the job.

3.0 SYSTEM PROGRAMMING CONSIDERATIONS

3.1

INSTALLATION

The installation of the new interactive subsystem was
co-ordinated with the installation of the #7/32" FREND system
and the associated '"6500" support routines (1FP, CPCIO. CPUES,
CP2TT). All of the "6500" routines were installed in LSD 45.18
with bug fixes in LSD's 45.19 and 45.20. The LSD U45.18 system
was designed to be as compatible as possible to the previous
interactive system. 1In LSD 46.00. along with the official
installation of the FREND system, minor modifications were made
to install the final version of the system.

The batch printer subsystem was installed in LSD 48.05 and FREND
version 02.00. This involved some modifications to MANAGER and
MAN, a lot of new code in FREND, and smaller changes to CMR.
IRCP. CPCIO. CP2TT. CP4ES. QDR. 6DP. FECMD, ARGUS, 1EJ. FNT,
DISPOSE. and 1FP.

3.2 SYSTEM TABLES

1
9

6SM no. 135.1
Page 10

3.2.1 LOW_CORE

Pointers and counts referencing interactive inout.
output, and backup buffers were deleted from P.SHA,
P.SHA1, and P.SHA2.

3.2.2 MANAGER TABLES

The input. output. and backup buffers were deleted. The
special input and output characters which were passed to
MMM (SOC. and SIC. symbols) were deleted.

The input and output buffer addresses were deleted from
the USER table. FRONT END port and socket numbers were
added.

For the front-end batch printer subsystem, the USER table
was extended to include an entry for each printer. This
added length is not reflected in the table length field
in P.SHA1, so that only MANAGER knows these entries
exist.

4.0 INTERNAL REFERENCE SPECIFICATIONS

The elements of the interactive subsystem are:

1.

MANAGER is the interactive line manager. It is responsible for
initiating and overseeing the activities and needs of the MISTIC
Jobs.

It directs its PPU lackey MAN to set flags and manipulate system
tables as needed.

To determine the status of the terminal end of a MISTIC Job.
MANAGER communicates with the 7/32 system over a control port.

Based on information from the 7/32 and from system tables,
MANAGER is able to direct the interactive system to serve the

needs of MISTIC jobs,

MAN is designed solely for use by MANAGER, the interactive
system coordinator for MISTIC2 service. MAN performs those
functions which require a PPU program because of manipulation of
various system tables.

MSO is an interactive output routine left over from INTERCOM 1.
It is called by CPU programs to move either ASCII or display
code messazes to an interactive line. It is also called by MSG
to display messages. ‘

MSX is an interactive error message PP routine left over from
INTERCOM 1, It is called by others to issue error flag

6SM no. 135.1
Page 11

(F.ERXXX) messame, I/0 messages (also issued by 6WM), and CPAUES
error messages (also issued by 6DP).

5. Many utility and special function prosrams. LOGIN processes the
user loa in procedure. ULOGOUT processes the user log out
procedure. FECMD was written to allow Front End commands to be
issues by a 6500 program. READPT. WRITEPT, and TPREAD provide a
means for inout and output spooling. SETCODE permits a file's
character code to be changed.

The following outline the events which occur when a user logs in:

1. The 7/32 sends MANAGER an open protocol record, indicatineg a new
user wants to log in.

2.' MANAGER searches the user table for a free entry and initializes
it.

3. MANAGER calls MAN to find and initialize a pool pocket for the
new user.

4, MANAGER fakes a user command of LOGIN.

5. MANAGER puts the control card +LOGIN. in the user's swapped out
control point area.

6. MAN is called in to start the user job.

T. LOGIN runs and its PP SPN updates the user table entry with the
user authorization limits and identifications.

8. The user job is swapped out waiting command (WT.CMD). MANAGER's
processing state for this user is now SERV, waiting for a user
type in.

In the batch printer system, FREND is the supervisor., and MANAGER is
the slave. FREND drives the printers, and MANAGER performs disk file
processing tasks such as zetting a file from ECS. returning a file to
ECS, reading it, positioning it. findineg the dayfile. etec.

The batch printers were integrated into MANAGER by creating a USER
table entry for each one. as well as some auxiliary tables to contain
information unique to the printers. The USER table was used because
it already contained many fields pertinent to print jobs, and also
because MANAGER is a state-driven program, using the USER table index
throughout. 1In this way, printer states could be added, with only
minor changes to MANAGER's state processing code.

The printer USER table entries are contained in an extension to the
USER table known only to MANAGER, not to the rest of the system (the
length of the table in P.SHA1 did not change.)

The major events in a print job are as follows:

4.1

6SM no. 135.1
Page 12

When a printer is turned “ON". FREND sends a FP.OPEN protocol
record to MANAGER. which causes table entries to be initialized
for the printer.

When a printer is ready for a print file. FREND sends a FP.GETO
protocol record to MANAGER. MANAGER then calls MAN to get an
appropriate print file from ECS. When a file is found. MANAGER
sends a FP.NEWPR record to FREND, and begins to read the file.

If the print file has a dayfile, MANAGER will automatically
position the file to the beginning of the davfile. This causes
the dayfile to appear at the beginning of the print file. When
EOI is reached., MANAGER automatically rewinds the file before
reading again, and when the dayfile is read for the second time.
MANAGER sends the FP.EOI record to FREND.

When FREND receives the FP.EQOI from MANAGER, it finishes
printing the file, then sends the FP.ACCT record to MANAGER,
containing page and line counts for the job. This is a request
for accounting. MANAGER computes the estimated charges. and
sends this back in another FP.ACCT record. MANAGER also
dayfiles the charge and gets rid of the print file.

MANAGER

MANAGER is a state driven routine. There are tables which
specify the processing state of each user at any time. Each
processing state has a serially-reentrant routine associated
with it.

MANAGER runs at control point 1. Currently, it cannot be moved.
The user table is kept within MANAGER's field lenzth and its
absolute address is kept in low core (P.SHA1).

4.1.1 TABLES

MANAGER has several internal tables to keep track of its
users. There are pointers in MANAGER's low core to all
of its tables. This helps in both debugeing and crash
analyzing. Also. the zeroth entry of STATUS. AUXSTAT,
AUXSTAT2., and PRGCOM contain the name of the table in
display code. Again, helping the programmer.

STATUS, AUXSTAT, and AUXSTAT2 are completely internal.
Only MANAGER modifies these words.

PRGCOM is a program communications word. For example,
through a SYS request a user may set a timed input
request. SYS will interlock the PRGCOM word and set the
timed input reauest in it. MANAGER will see the request.
process it and free the PRGCOM interlock.

6SM no. 135.1
Page 13

The mechanics of the PRGCOM interlock are: first. the PP
routine gets the INTERCOM channel (CH.SHA) and checks the
MGRACS flag in the PRGCOM word. If its set. MANAGER is
working on a previous request. When the flag is clear,
the PP sets its request and MGRACS in PRGCOM. It is now
MANAGER's turn. After MANAGER is finished with the
request. it will clear the request and the MGRACS bit.

The only exception to this interlock procedure. is SSS
and the PRGACT flag, SSS will just clear this flag when
the job is swapped out waiting command (WT.CMD). At this
point, SSS is the only activity and an interlock is not
necessary.

The user table is also within MANAGER's field length.
P.SHA1 in low core contains the absolute address of this
table. The table is initialized by LOGIN/SPN when the
user first logs into the system. MANAGER copies the
user's connect time to a separate word in the user table,
where it is counted down. This is done to prevent both
MANAGER and SPN from writing in the same word.

Several tables are used only for the batch printer
system. These tables are used by MANAGER only, and
contain flags. counts. values. etc., for the printers.
Their names are PRSTAT. PRSTAT2, PRFILE. and DFWRD.

These tables each contain one word for each printer. plus
an extra word containing the table name in 'H" format,
for ease in reading dumps. With the USER number in B2,
all these tables are indexed via the expression
"BASE+B2+tablename.”

6SM no. 135.1
PAGE 14
4.1.1.v STATUS
[+ [- 1og =17 on - Nt
["-] g "nm mN NN Dt
[MSTARTE F7R00 F7REJ | FINEXT MFET MUSER
MSTATE users MANAGER state
FTADD relative address of 7/32 FET
FTREJ reject state for a LISTMSG
FTNEXT next state after a LISTMSG
MFET relative address of TTYTTY FET
MUSER relative address of user table entry

6SM no. 135

A

Page 15
4.1.1.2 AUXSTAT
222TL9IIVT 83 e =2 -

A - TPREAD
B - NUMEER
C - TAPE

D - TAPEC

E - READPT
F - TTYDTF
G - LO

H - LI

I - 2MW

L - TAPER
M - READY
N - SUSPN

0 - DISC

Q - MDISC

set

set

set

set

set

set

set

set

set

set

if

if

if

if

if

if

if

if

if

if

unused

set

if

in TPREAD mode

in auto-numbering

in any tape mode

in TAPEC

in READPT mode

data on TTYTTY

in LOGOUT

in LOGIN

2 minute warning given

5 minute warning given

commands read during TAPE

set if OK desired for response

set when = used in auto-numbering

set if user has been disconnected

unused

set if MANAGER disconnected user

unused

integer portion of number line

fraction part of numbervline

U - NII

V - NIF

W - ABTC

6SM no. 135.1
Page 16

integer portion of increment
fraction part of increment

abort count down

6SM no. 135.1

PAGE 17
4,1.1.3 AUXSTAT2
2833 G232 23 S8 =z
F| I K L M
TMOF set when timed input is done
CONN set when terminal is connected
HAVED set when 7/32 has user input
NEEDD set when 7/32 has space for output
unused
STAT set when 7/32 requests a JOBSTAT
TTYCCC TTYTTY character code
USABT set for user abort
FECRP set when FEC is valid
FEC F.e. Command error code
unused
PORT 7/32 port number
T™MOC timed input count

6SM no. 135.1

PAGE 18
4.1.1.4 PRGCOM
v et et
il :
A - MGRACS MANAGER busy with PRGCOM
B - unused
C - PRGACT set when user job is active
D - unused
E - SLO set if LOGOUT is in progess
F - unused
G - PTMOC timed input count

USER TABLE

1.1.5

e i DL NPT L E R I P T I e R I I N NN RN TR

ol USER 1D

1 PROBLEM NUMBER W.USPRS

2{ c.usFL. wAxInum FL c.usTL, A UNUSED _n.cu_:_.. . .__ € _ PRSHORD ORDINAL W.USPAR. W.USLO
s| c.usrTL. RTL vALUE UNUSED _1_ .._ ._ .__.. 8.USHPO, POOL OROINAL | RCCUMULATED CP TINE _ c.usPTPP, L W.USTL. W.USCPT
4 RFL VALUE c.usTT, M UNUSED _ CONNECT TIME FROM AF (LOGIN) W.USFL, W.USTT
s UNUSED _ c.ussock, N _ C.USPORT, PORT NUMBER | W.USSOCK. N.USPI
s - LOGIN TINE N.USLOTH .
7 UNUSED _ REMAINING CONNECT TIME H.USCNTH

10 SEQUENCE NUNBER W.USSEQ

L]
B
D
E
F
H

MAXINUN CP TIME LIMIT

FILE LINIT

S.USLO., LOGOUT BIT
S.USLOCK, LOCK FLRO

S.USLNHME. [F SET NERNS HERMES USER
S.USLNTN, IF SET NEANS TELENET USER.

E2EICFX o~

S.USLNET, I[F SET MEANS NETWORK USER
S.USLNHS, IF BET THE LINE IS 1200 BAUD
S.USLNFE. IF SET THE LINE IS RN FE LINE
POOL POCKET RODRESS .
STINULATOR THINK TINE (SECONDS)
ORIGINATING S8OCKET (CC PORT IF MERIT)

6SM no. 135.1
Page 20

4,1.1.6 PRSTAL

PRSTAT TABLE

Nt
i

1

DFPRU NPRU

FNTAD
(18 BITS) {18 BITS)

(12 BITS)

DFPRU PRU position of dayfile record
NPRU PRU count for backspace command
NEWCPY 1 if FREND needs another copy
NEWREC 1 if EOR just read on print file
DAYF 1 while printing the dayfile
SKB 1 if FREND requested a backspace
PREOI 1 if at end of print file

FNTAD print file FNT address

6SM no. 135.1

Page 21
4.1.1.7 PRSTAIZ
PRSTATZ TABLE
LINES PRGES
UNUSED (18 BITS) (15 BRITS) %RDI

4.1.1.8

4.1.1.9

LINES lines printed for this job
PAGES pages printed for this job

FPACCT FREND sent accounting command

ENDJ 1 if job ended by overator
OWNF 1 if user supplied own forms
RG rate group field for orint job
PRFILE

This table contains the exact copy of the 3rd
word of the print file FNT entry. It is kept to
record the file size, dayfile-present flag,
copies count, and print limit fields.

DFWRD

This table contains a copy of the second word of
the dayfile record, for print files that have
dayfiles. It is used as an aid in recosnizing
the dayfile record when it is read for the
second time. The dayfile is actually recognized
by its PRU position in the file, but keeping
this word for comparision means that no file
position check (FNTSTAT reauest) need be done
for records which do not match this word.

6SM no. 135.1
Page 22

4.1.2 MAIN LOQP

The main loop consists of processing each user, followed
by control port processing. disk I/0 checking, EXPORT
processing, clock processing, operator requests (CFOs).
and then a small recall loop.

Each user has a processing state associated with it
(MSTATE). The individual processor is jumped to via a
Jump table at JUMPTAB. The state processors return to
MAINLP (the top of the main loop).

4.1.2.1 CONTROL PQRT PROCESSING

Subroutine CTLPORT is called from the main loop
to process incoming control oport messages., If
the control port has been set complete. the 7/32
has died. A dayfile message is issued and
MANAGER aborts.

Subroutine RDCTLP is called to read a control
port message. The record type (FP.XXX). the
port number and first parameter are isolated.
The individual record type processor is called.
They all return to CTLP where another message is
read and processed. This continues until the
control pvort is empty.

An FP.CLO record causes the disconnect flags to
be set (MDISC and DISC).

An FP.OTBS record causes the NEEDD flag to be
set if there are L.DTOT free buffers and NEEDD
is cleared if there are not. ’

An FP.INBS record causes the HAVED flag to be
set if there is user data in the 7/32 and
cleared if there is not.

An FP.ABT record causes the USABT flag to be
set.

An FP.OPEN record causes MANAGER to find an
empty user table entry and initialize it. An
open accept response is sent back to the 7/32 if
MANAGER found an empty user table entry. An
open reject is returned if the user table is
full,

An FP.STAT record causes the STAT flag to be
set.

An FP.FRCP record causes the FECRP (Front End

6SM no. 135.1
Page 23

command reply) flag and the FEC (Front End
command error code) to be set.

An FP.CPOPN record is ignored. This is just a
response from MANAGER's outgoing control port
open. Since 1FP ensures the 7/32 is running and
tells MANAGER when FREND has died, MANAGER does
not need to keep track of these response
records.

Several protocol types are used only for the
front-end batch printers. These are processed
exactly as are any others. Most result in
various flags and fields being set in the
printer tables, which in turn cause the printer
states to do various things. The new record
types are as follows.

FP.GETO is FREND's "get me a print file"
command. The record contains the source code to
use, and 2 PRU limits. These are passed to MAN
in the function 7 call, and MAN does the real
work of getting an appropriate print file. The
printer type is also passed to MAN, so that a
file of the correct disposition can be gotten,
but this information came to MANAGER as the
"OT.XXX" value in the FP.OPEN record for the
printer.

FP .NEWPR is MANAGER's answer to FP.GETO. It may
contain all zeros, telling FREND there was no
print file, or it may contain the file name,
size, copies count, print limit, and
dayfile-present flag.

FP.ENDJ - this is sent from FREND to MANAGER, to
tell MANAGER that a print file has been ended or
killed by the operator, or that a file has hit
page limit. MANAGER will stop reading the file,
and return it to ECS, in the "R" queue.

FP.SKB is a command to backspace a print file,
sent from FREND to MANAGER. It contains a count
of prus to skip.

FP.ACCT is FREND's request for print file
charges from MANAGER. It is sent to MANAGER
with page and line counts; MANAGER sends it
back with approximate charges and rate group.
This record also causes MANAGER to dayfile the
print charges.

FP.COPY is sent from FREND to MANAGER after EOI,
if another copy of the file must be printed. It

y.1.2.2

4.1.2.3

4.1.2.4

4.1.2.5

6SM no. 135.1
Page 24

causes MANAGER to rewind the file, reposition to
the dayfile if any, and begin reading.

DISK 1/0 PROCESSING

Subroutine CHKFETS is called from both the main
loop and from CIOCALL to manage the TTYTTY FETs
and requests.

First all of the active FETs are processed by
subroutine CFET one at a time. If the FET is
complete, the routine responsible for cleanup
after the function is complete is called. The
macro JIOFUNC defines the initiating and
terminating routines associated with each I/0
function issued on a TTYTTY file.

Next, unassigned FETs are assigned to users
needing a FET. FQUEUE contains the chain of
users.

EXPORT PROCESSING

Subroutine CHKEXP2 is called from MANAGER's main
loop to check on EXPORT activity. If EXPORT is
up and running subroutine ALC is called to
manage the EXPORT lines.

CLOCK AND COUNTERS

Subroutine CLOCK is called from the main loop.
It is responsible for update various MANAGER
counters.

If a second has not elapsed since that last
call, CLOCK just exits.

Otherwise, CLOCK loops through each user table
entry and decrements until zero the connect
time, the abort count, the input timeout count.

Then CLOCK issues a control port open record
(FP.CPOPN) every 30 seconds to inform FREND that
MANAGER is alive and running.

CFQ PROCESSING

Subroutine CFO is called from the main loop to
check for operator requests. Currently, the
only request is LOGOUT, i.e. start the idle down

6SM no. 135.1
Page 25

procedure and inform users that MISTIC service
is terminated.

Under previous systems, any time MANAGER dropped
out, MMM would inform users that service had
ended. With the FREND system, a request from
the 6500 must be sent to FREND to notify users
that service had ended. In most cases. MANAGER
was aborted and a valid dump of both MANAGER and
the 7/32 is needed. Sending a service
terminated message could invalidate the dump.

4.1.3 USER PROCESSING STATES

Each user has a processing state associated with it. so
that MANAGER remembers what has been done and what needs
to be done with the user's job.

A set of states waits for, parses. and processes a
command line. Another set of states initiates the user
job from the parsed command line. A single state is
responsible for overseeing the needs of the running job.
A set of states then lists TTYTTY to the terminal. Then
MANAGER goes back to the states which wait for and
process command lines.

4.1.3.1 SERV, WAITIN. DOSERV, AND STASH

This set of states accepts a command line from
the user's terminal, parses it and processes 1t
up to the point of, but not including,
initiatineg the user job.

State SERV waits for a command line. It
processes disconnects. user aborts, and status
reaquests. If the user is in either TAPE mode or
auto-numbering., the user abort indicates the end
of that mode. If user input is present in the
7/32, SERV starts a read and goes to state
WAITIN to wait for the read to complete.

State WAITIN waits for the read to complete. If
the user is in either TAPE mode or in
auto-numbering. any end-of-file records are
changed into the display code eaquivalent strings
®*EOR, *EOF, *EORN, or *EORNN (where N and NN are
the level numbers).

State DOSERV parses the command line into
spooled input, EDITOR text lines. EDITOR
commands, NUCLEUS library commands, system
commands, and unrecognized garbage.

6SM no. 135.1
Page 26

DOSERV puts the commands in the user's swapped
out ECS control point area.

State STASH puts the spooled input and text
lines on the user's TTYTTY file, buffering it
through ECS.

4.1.3.2 X M dJ

This set of states initiates an interactive job
and processes MANAGER directives.

State MGRCC is entered whenever a MISTIC control
card is found in the control card buffer or from
state NEXTC after a MANAGER directive was
processed. MGRCC checks the next control card
for a MANAGER command. If it needs to be
orocessed by MANAGER. the correct processor is
called. All processors exit to state NEXTC. 1If
it is not a MANAGER directive. MGRCC exits to
state COMR2. :

State NEXTC is the common exit for all MANAGER
command processors. It checks the user's
control card buffer for more control cards. If
more are present. it exits to MGRCC, else to
state RMSG to issue the OK or READY message.

.State COMR2 is the first step in initiatine the
user Jjob. It checks for data on TTYTTY. If
there is none, it exits to state GOJOB, else to
state COMR3.

State COMR3 just rewinds the TTYTTY file and
exits to state GOJOB.

State GOJOB waits for TTYTTY to become complete.
It then calls MAN to start the user job. It
exits to state CMDCHK.

CMDCHK waits for a reply from MAN, MAN will
detect file limit and time limit and not start
the user job. CMDCHK exits to state ACTIVE if
there are no errors. Otherwise. it issues the
time limit or file limit message and exits to
state RMSG to put out the OK or READY. message.

4.1.3.3 ACTIVE
In state ACTIVE. the user's job is running.

MANAGER processes PRGCOM reauests, user aborts,
disconnects. and status reaquests (JOBSTAT). If

4.1.3.4

6SM no. 135.1
Page 27

the job is in a wait state (WT.XX), MANAGER is
responsible for freeing the job when the wait
condition is no longer true.

If the job is waiting input (WT.IN), MANAGER
waits for the HAVED flag to be set and then
calls MAN in to free the job.

If the job is waiting output (WT.OUT), MANAGER
waits for the NEEDD flag to be set and then

calls MAN in to free the job.

If the job is waiting Front End command
(WT.FEC), MANAGER waits for the FECRP flag to be
set and for the job to completely swap out. It
moves the error code to the swapped out control
point area and calls MAN in to free the Jjob.

MSO issues a Front End command and does not swap
the job out waitineg command. To reduce
overhead., if MANAGER has a command reply from
the 7/32 and the job is swapped out not waiting
Front End command, MANAGER will clear the reply
from its tables.

LIST. PRELST. LISTTY, AND ENDLST

These states are responsible for listing the
user's TTYTTY file to the terminal.

State ACTIVE exits to state LIST after the user

‘has swapped out waitineg command (WT.CMD). LIST

merely rewinds TTYTTY.

State PRELST waits for the rewind to complete.
PRELST exits to state MGRCC if there is no data
on TTYTTY. Otherwise, PRELST sets the correct
character code in TTYTTY and exits to state
LISTTY.

In state LISTTY, the actual spooline occurs,
The TTYTTY file is spooled through ECS to the
user's terminal. LISTTY exits to ENDLST when
TTYTTY has been listed. a disconnect has
occurred, or a user abort was entered.

State ENDLST cleans up after the listine
process. The character code of TTYTTY is reset
to old Mistie, the ECS buffer pointers are
cleared. and TTYTTY is evicted. ENDLST then
exits to state MGRCC.

6SM no. 135.1
page 28

4.1.4 PRINTER PROCESSING STATES

MANAGER processes the state for each printer. on each
pass through the main loop, after all interactive users
are processed.

The following sections describe the printer states, as
nearly as possible in the order of flow in a print job.
The complete set of states is a cvcle., besinning with an
idle printer, going through print file retrieval, dayfile
processing. normal printine, and end-of-job processing.

4,1.4.1

4.1.4.2

PRINTER TURNED OFF

wWhen a printer is turned off, it is in state
YNULL," or zero. There is no processor for this
state. and the main loop simply skips any
printer (or interactive user. for that matter)
whose state is zero. ‘

When FREND sends a FP.OPEN on a orinter socket.
the printer is turned on, and MANAGER puts it in
state IDLEPR.

IDLE PRINTER STATES

IDLEPR This fs the state for a printer between
jobs, waiting for a job to print.
IDLEPR waits for the DISC flag to be
set, indicating that a FP.CLO was sent
by FREND. turning the printer off. When
this happens, this state clears out the
printer tables. and goes to state NULL.

GETO A FP.GETO protocol record from FREND in
state IDLEPR sends the printer to this
state. GETO makes a MAN call to request
a print file, then coes to state WAITPR.

WAITPR WAITPR waits for the MAN call to be
complete, then checks the return. It
will be either that no file was found.
or a file was found. and its FNT image
is in the MAN call parameter block.
WAITPR sends the FP.NEWPR to FREND, with
or without print file information.
(FREND needs a response to the FP.GETO,
even if there is no file to print). If
no file is found. WAITPR goes back to
state IDLEPR. If a file was found, it
goes to state PREDF1. the first davfile

6SM no. 135.1
Page 29

positioning state. Note that PREDF1
will check for a dayfile present before
positioning.

4.1.4.3 DAYFILE POSITIONING STATES

These four states are responsible for
positioning the print file at the beginning of
the dayfile record (always the last record in
the file.) the first of them executes at the
beginning of every print job, and at the
beginning of each subseaquent copy, and it
decides to do the positioning only if the file
has a dayfile (the dayfile-present bit is set in
the output FNT.)

These states ensure that the dayfile appears at
the beginnineg of the print on front-end
printers. The positioning seauence is: skip to
end-of-information, backspace one record, and
make an FNTSTAT call to record the file
position.

PREDF1 This state sets the need-data flar
(NEEDD). which causes reading to begin
after the dayfile is positioned. It
sets the new-record flag (NEWREC), which
will trigeer the disk read routines to
remember the second word of the davfile
record for later comparison. Then it
checks to see if the file has a dayfile,
and goes straight to state PRINT if
there is none. If there is a dayfile
record, this state begins a SKIPEI
operation, and goes to state PREDF2.

PREDF2 This state waits for the SKIPEI that was
begun by PREDF1 to be complete. then
starts a SKIPB of one record. and goes
to state PREDF3.

PREDF3 This state waits for PREDF2's SKIPB to
complete, then issues an FNTSTAT call,
to get the position of the dayfile
record in the file.

PREDFY This state waits for PREDF3's FNTSTAT
call to complete. then records the PRU
position of the bezinnine of the dayfile
record in the DFPRU field of the PRSTAT
table. The position is remembered, so
that the dayfile can be recognized the
second time it is read. Then. MANAGER

6SM no. 135.1
Page 30

will simulate EOI on the print file. to
avoid reprinting the dayfile at the end
of the job.

4.1.4.4 NORMAL PRINTING STATES

These states execute in a cycle. starting with
the setting of the need-data (NEEDD) flag by
the receipt of the FP.OTBS record from FREND.
When NEEDD is set, MANAGER begins a read on the
print file, and transfers a block of data to

FREND.

PRINT

BL2FE

This is the state most usually occupied
by a orint job during printing. It is
the idle state between blocks of print
file data sent to FREND. PRINT monitors
the NEEDD flag. which means that FREND
has room in the orinter port for a
buffer-full of data from the print file.
When NEEDD is set. PRINT reserves a pair
of FETs and a buffer for the transfer,
fills in the file names and the disk
file FNT address, and bezins a READ on
the disk file. The next state is BL2FE.

PRINT performs other functions besides
checking the NEEDD flae and initiating
disk reads. For descriptions of these
other functions. see the following
sections on end of orint job processing,
file. skioping, and abnormal
terminations.

This state just calls subroutine WTBLFE,
which does some complicated orocessing.
What it needs to do is wait for the disk
READ to complete. and begin a WRITE.
WRITER or WRITEF to flush the buffer to
the connected file (to the printer port
in FREND). But it also has to check for
EOI. and it must recosnize when the
dayfile record is beine read for the
second time, and treat this as the end
of the print file.

At the disk file EOI on a print job with
no dayfile, BL2FE releases the FETs and
buffer, and sets printer state PREOI.
This will cause the FP.EOI record to be
sent to FREND, sienalline end-of-job, or
at least end of this copy of it.

CKDAYF

ENDBL

6SM no. 135.1
Paze 31

At EOI on a job with a davfile, this is
really not the end of the job. but onlv
the end of the dayfile. which has been
printed at the bezinning of the job.
WTBLFE rewinds the print file. and goes
back to state PRINT (via ENDDSK. which
waits for the rewind to complete), with
the NEEDD flag still set. Thus a new
disk read will be started immediately,
without having to wait for another
FP.OTBS from FREND.

At the beginning of each record (NEWREC
= 1), WIBLFE calls subroutine CKUDAYF,
which does the processine necessary to
recognize the dayfile when it is
recognized the second time. This
subroutine saves the image of the 2nd
word of the dayfile record on the first
pass through, then compares the 2nd word
of each subseauent record with it. When
a match is found. CK4DAYF begins a
FNTSTAT call, to zet the current
position of the print file. then changes
state to CKDAYF.

This state waits for the FNTSTAT call
started by CKY4DAYF to complete, then
compares the current file position with
the known position of the dayfile
record. as remembered by state PREDFH .
If the position is the same., then we are

“ peading the dayfile record for the

second time this copy. and we must end
the print job here. CKDAYF then
releases the FETs and buffer, and goes
to state PREOI, which will send the
FP.EOI record to FREND, to signal the
end of the job (or copy). If the
position does not match. CKDAYF simply
returns to state BL2FE. which will send
the record in the buffer to FREND.

This state is entered from WIBLFE
(BL2FE) after the write to the connected
file is begun. It simply waits for the
write to be complete. releases the FETs
and buffer, and returns to state PRINT.
One problem that can arise here is that
1FP will refuse to do the write because
of a shortage of buffers in FREND. 1In
this case the FET is set complete. but
the buffer is still full of data. ENDBL
will then wait, without chanezine states

6SM no. 135.1
Page 32

or releasing the FETs, until the NEEDD
flag is set again, which will occur when
FREND has cleared out enough of its
memory to make more buffers for output.
Then ENDBL reissues the write, waits for
it to complete. and so on.

4.1.4.5 END OF PRINT JOB STATES

At the end of a print job. certain things must

happen:

FREND must be told there is no more

data. we nmust decide whether to print another
copy. and if not. we must do accounting and
close the print file. These states accomplish
all this.

PREOI

PRINT

This state is entered uvon reachinz EOI
on the print file, either real (if there
is no dayfile) or simulated (when the
dayfile is read for the second time).

It sends the FP.EOI protocol record to
FREND, which tells FREND to expect no
more data, clears the NEEDD flag, sets
the PREOI flag, and goes to state PRINT.

This state behaves differently when the
PREOI flag is set. The EOI condition
allows PRINT to check for the receipt of
the FP.ACCT orotocol record from FREND,
which signals that the last copy has
been printed. and final print job
accounting should be done. PREOI also
makes PRINT sensitive to the NEWCPY
flag, which is set by the FP.COPY
protocol from FREND. It tells MANAGER
to rewind the print file and transmit it
again for another copy.

When the FP.ACCT protocol record is
received, state PRINT sends a FP.ACCT
back to FREND with the estimated print
charge, so that FREND can print it on
the listing (subroutine SENDACCT does
this). Then subroutine PRTDAYF is
called, to dayfile the accounting
message for the job.

After the accounting, PRINT returns the
print file (subroutine RETURNPR) and
resets all tables for this job
(RESETPR). This leaves the printer
“ON." in state IDLEPR, waitinz for a
request for a new file to print.

4.1.4.6

4.1.4.7

6SM no. 135.1
Pace 33

If FP.COPY is received (instead of
FP.ACCT). PRINT begins a REWIND on the
print file. and «oes to state COPY.

COPY This state waits for the completion of
the REWIND that PRINT started. Then it
changes state to PREDF1, to begin
transmission of the print file for a new
copy.

PRINT FILE SKIPPING

Forward skipping (the %SKIP front-end command)
is done entirely by FREND. with no special
processing in MANAGER. It is done by throwing
away lines until the target PRU is reached.
Note that it is FREND, not MANAGER. that counts
PRUs in a print file and keeps track of the
current position.

Backward skipping (the $BKSP command) is done by
MANAGER, because there is a CIO function to skip
a file backward a number of prus. This is done
when the FP.SKB protocol record is received in
state PRINT.

PRINT State PRINT checks the SKB flaz (set by
receipt of the FP.SKB protocol) at all
tines. unless the printer has been
rewound or accounting has been requested
by FREND. When the SKB flag is set ,

. PRINT starts a backspace operation on
the print file, for the reauested number
of prus. PRINT then goes to state
ENDDSK to wait for completion.

ENDDSK This is a general purpose state, which
just waits for any operation on the
print file to complete. releases the

FETs and buffer. and goes back to state
PRINT.

ABNORMAL PRINT JOB TERMINATIONS

There are 3 ways by which a print job can
terminate abnormally: '

1. The printer may be rewound.
2. The print job may be ended or killed.

3. The print job may reach page limit.

6SM no. 135.1
Page 34

PRINT This state checks the DISC flag. DISC
is set when a FP.CLO is received from
FREND. This means either that the
printer was turned off (and no file was
printing) or that the job currently
printing was rewound. When PRINT sees
DISC = 1, it makes a MAN call to put the
print file back in ECS (without changing
queues). then clears all tables for that
printer. The printer is then in the
NULL state.

PRINT also checks the ENDJ flae. which
is set by receiont of the FP.ENDJ
protocol record from FREND. This record
indicates that the print job has been
abnormally ended. either by hitting
print limit, or by operator %END or
YKILL. When ENDJ is set, PRINT
recognizes the accounting reocuest
(FP.ACCT) as if the file were at EOI.
After accounting is done, PRINT again
checks the ENDJ flag, and if set. calls
MAN to return the print file to the “R"
queue. instead of unloading the file.

4.1.5 PRINTER FILE HANDLING

4.1.5.1

DISK FILE FNTIS

While FREND is orintineg a job. there are always
2 FNT entries for the job in CM. One is the FNT
as it came from ECS, and it is kept in CM for
recovery purposes. It is never used. The other
FNT is a scratchpad created by MAN function 7.
which is used for all 1I/0 on the print file.

The reason this is done is that disk I/0
destroys several fields in the output FNT. which
must be preserved if the system or MANAGER
crashes. These fields are the PN and PN
ordinal, orint limit, file size, ete. IRCP and
MAN function 6 (MISTIC2 idledown) have both been
modified to recognize dual-FNT print files at
MANAGER's control point. They will zero out the
local scratchpad FNT. and put the output FNT
back in ECS.

6SM no. 135.1
Page 35

4.1.5.2 PRINTER FET AND BUFFER MANAGEMENT

MANAGER has a number of “block-transfer FETS"
which are meant to be shared between processes
which transfer data in a blocked fashion between
disk and the front-end. The number of them is
determined by the symbol N.BLFET. which is
currently set to 1. Only the batch printers use
them, but they may someday be used for E/I200
data. TTYTTY output, and a file transfer
process.

Each “FET" is really a pair of FETs, one for a
disk file and one for a connected file, with a
shared 6-PRU buffer. The 6-PRU size was chosen
for the batch printers, because it fits evenly
into an RB, and nearly fills a front-end port.
and so optimizes disk transfer efficiency for
these files.

A block-transfer FET may be reserved to a iuser®
by calling subroutine GETBLFET with the user
number in B2. If a FET is free, GETBLFET places
the user number in the FET, and places the FET
address in the FTADD field of the STATUS table
for that user. A FET may be released by calling
RELBLFET.

At initialization time. MANAGER connects a file
for each printer. The file name is derived from
the USER number of the printer. Each time a FET
is reserved, the two file names. the oprinter
port number and the disk file FNT address must
be placed into the FET. This is done for
printers by subroutine INIBLFET.

4.1.6 ECS USAGE

MANAGER has its own ECS partition. which it uses to hold
buffers for each user. Each buffer is 2 prus in size,
and is used to hold text lines for spooling to or from
TTYTTY.

When in command mode. all numbered text lines are written
to the user's ECS buffer, which is periodically written
to the TTYNNN file (for user NNN). This then becomes the
user's TTYTTY file when the job is swapped in. When in
TPREAD. READPT. or tape mode., all input lines are written
directly to the user's ECS buffer, which is then
periodically flushed to TTYNNN.

When listing TTYTTY. the proper TTYNNN file (for user
NNN) is read into MANAGER and written directly to the

6SM no. 135.1
Page 30

user's ECS buffer. Then it is read from ECS in small
chunks of about 20 words, and written to the 7/32 via 1¥P
and CIO.

This ECS access is coordinated by the TTYTTY support
routines in MANAGER.

MANAGER also accesses the job's control point area, which
is kept in ECS when the job is swapped out. When a line
of commands has been entered, MANAGER parses them and
writes them directly to the user's control card buffer in
the swapped out control point area.

COMMUNICATION WITH FREND
All communication between MANAGER and the 7/32 is handled
by 1FP. MANAGER communicates with the 7/32 through 2

distinet interfaces: the control ports and standard CIO
reguests, -

4.1.7.1 CONTROL PORTS

Control ports are special files which carry
continuous control information between MANAGER
and the 7/32. As long as these control port
FETs are set busy, 1FP continuously transfers
information over them between MANAGER and the
7/32. The MANAGER control port FETs are pointed
to by word W.CPFE in the control point area.
There are 2 FETs, one for information from
MANAGER to the 7/32, and one for information
from the 7/32 to MANAGER. MANAGER is control
port 1 (PTN.MAN), which corresponds to port 1.in
the 7/32. Any information entered by MANAGER
into its FET for transfer to the 7/32 is
automatically written to port 1 in the 7/32.
where task CTLPT is started to process it. Anv
information which the 7/32 writes to its port 1
is automatically transferred to MANAGER. This
automatic transfer occurs as long as both FETs
are busy, and 1FP believes that the 7/32 is
alive.

- pata transferred over control ports is called
PROTOCOL. A orotocol record senerally is very
short, and is of the form:

8/BC. 8/TYPE. 8/0, 8/0. 8/PT, 8/P1 ...

BC byte count

TYPE

protocol record tyve

63M no. 135.1

Pagze 37
PT = port number to which the record
applies
P1 ... = parameters

~ All incoming protocol records are processed by
the MANAGER subroutine CTLPT. The major records

processed are:

FP.OPEN -

sent by the 7/32 when a user

dials in.

FP.CLO -

sent by the 7/32 when a user

hangs up.

FP.INBS -

indicates the number of lines of

user input on the 7/32.

FP.OTBS -

indicates the number of lines of

user output to be sent on the
7/32.

Outzoing protocol records are written by
-subroutine WICLPT. The major records sent to

the 7/32 are:

FP.ORSP -

FP.CLO -

FP.TIME -

FP.CPOPN -

FP.INBS -

FP.OTBS =~

open response. indicating
successful open.

requests the 7/32 to hang up the
user.

sets the time/date in the 7/32.

tells the 7/32 that MANAGER is
alive.

requests input buffer status
from the 7/32.

reguests output buffer status
from the 7/32.

A full descripntion of all protocol records is

found in FESYM.

ARGUS and the stimulator are

also control ports, and communicate with the
7/32 in a similar manner.

6SM no. 135.1
Page 38

4.1.7.2 DATA TRANSFER

All data transfer between the 7/32 and MANAGER
is done using standard CIO reauests. These
requests cause 1FP to transfer data between FETs
and buffers in MANAGER. and vorts on the 7/32.
MANAGER has 4 FETs and associated buffers which
it uses to read from or write to the 7/32.

These are shared between all users on a
first-come/first-served basis. Once an I/0
operation is completed. the FET is released for
use by another user.

4.1.7.2.1 INPUT

MANAGER reads a line of input from
the 7/32 when an FP.INBS protocol
record tells him that the user has
data in the 7/32. An FET is
reserved, and a CIO request is made
for a native format read (IO.RDNF).
This is similar to a standard CIO
read but it also returns the record
header from the 7/32. (see the
description in CP2TT and FESYM). 1FP
transfers the data from the indicated
7/32 port to the buffer in MANAGER.
The data is then processed as a
command or a text record.

4.1.7.2.2 QUTPUT

For single line messases, MANAGER
writes data to the 7/32 using a
native format write. An FET is
reserved. and an IO.WRTNF CIO reauest
is issued. This causes 1FP to
transfer the data from MANAGER to the
associated data port on the 7/32. If
the data will not fit in the 7/32.
1FP completes the FET, but does not
transfer any data. MANAGER
immediately releases the FET, and
waits until the 7/32 sends an FP.OTBS
indicatine that there is room in the
7/32. Then MANAGER regenerates the
message and repeats the above steops.

When listing TTYTTY. MANAGER writes
data to the 7/32 in 20 word blocks.
using a standard CIO write. Hence.
partial lines are often written.

h.1.7.2.3

6SM no. 135.1
Page 39

This saves MANAGER the chore of
locatineg the end of a line (note that
4 different file types are supported)
and then transferrinz the data a line
at a time.

PRINTER OUTPUT

All output to the batch orinters is
done using CIO codes for connected
block write. The codes are:

I0.FWTBL front-end block WRITE
I0.FWBER front-end block WRITER
I0.FWBEF front-end block WRITEF

To the 6000 CPU routine, the rules
for these transfers are oractically
identical to those for IO.WRITE,
I0.WRITR and IO.WRITF on a disk file.
For a write. data from the buffer is
written to the front-end in PRUs,
until there is less than one PRU left
in the buffer.

1FP transmits the data to FREND
verbatim, without any translation or
EOL-byte checking. The data from the
CM buffer is packed into
240-character 7/32 buffers (24 CM
words to a buffer. in 6-bit mode).
filling each 7/32 buffer until the.
data remainine to transfer won't fill
240 characters. This last buffer
then is short. IO.FWBER and IO.FWBEF
requests zenerate FP.EOR and FP.EOF
protocols at the end of the data in
the port.

1FP can write 12 CM words to a 7/32
buffer in 8-bit mode, if the
character set in the FET is not OM.
However this mode is not used for the
printers. since the character set of
a print file is not known until FREND
determines it on a line-by-line
basis. Therefore, so as to avoid
losing bits from OM data, all
transfers are done in 6-bit mode.
ASCII data, which is packed 8-in-12.
must then be repacked into 7/32 bvtes

4.1.8

6SM no. 135.1
Paze 40

by FREND,

EXPORT PROCESSING

All EXPORT related subroutines and tables are assembled
in MANAGER under the qualifier EXPORT.

Subroutine CHKEXP2 is called from MANAGER's main loop to
check on EXPORT activity. If EXPORT is up and running
subroutine ALC is called to manage the EXPORT lines.

If EXPORT is not up. CHKEXP2 will read up the EXPORT
on/off flag from the installation area (W.INSAF).

CHKEXP2 will only read this flag once a second to keep
overhead down. If EXPORT is to be brousht up., subroutine
ALCINIT is called to initialize and then subroutine ALC
is called to manage the lines.

INITIALIZATION

There are 3 separate initialization sequences which must
be performed: MANAGER. Front End, and EXPORT.

The initialization code is overlaid. The 7/32
initialization code is assembled in a use block called
LASTLAST which will be returned to the system after
initialization has completed or become part of the EXPORT
buffers.

The initialization control code is assembled in the
TTYTTY file buffers.

4.1.9.1 MANAGER INITIALIZATION

Currently, MANAGER must only read up the ECS
partition word (W.ECMGR) for the MANAGER
partition. This is used to ensure. all ECS
references are within the partition before
issuing the ECS read/write request.

4.1.9.2 FRONT END INITIALIZATION

When called without any parameters, MANAGER will
always automatically load and start the 7/32.
The 7/32 is loaded with the current production
version of the FREND system.

For each LSD. there is a permanent file
FREND-LSD XXYY. where XXYY is the current LSD
number. This file contains the name of another

6SM no. 135.1
Paze U1

permanent file, the one containineg the Front End
system which should be loaded into the 7/32.

The name of this file will always be FREND-VER
NNNN, where NNNN is the version Aumber. MANAGER
will attach this file. and verify that it is
infact the proper version. (the 4 digit version
number is in the 1ST Y4 digits of word 8 of the
prefix table)

The correct permanent file is loaded into the
7/32 by simply reading it into MANAGER and
writing it to the 7/32 using 1FP and the IO.FWTM
CIO request.

If the NOLOAD parameter was specified. MANAGER
will not attempt to load the 7/32.

If the PFN= parameter was specified., MANAGER
will load the 7/32 with the FREND system on the
specified permanent file.

MAN is called in to initialize low core and
MANAGER control point area pointers.

MANAGER's control ports and 7/32 scratch files
are 1lnitialized. The correct date and.time are
sent to the 7/32.

After FREND is running, MANAGER calls subroutine
FEBM (in comdeck FEBM) to initialize the banner
message. This subroutine attaches a permanent
file containing the messagze, checks its
expiration date. and writes the message directly
into 7/32 memory, in the banner message table in
the LMBI. ‘

Banner message processing, including comdeck
FEBM, is fully described in 6SM 94.1.

4.1.9.3 EXPORT INITIALIZATION

The initial IOD parameter word is set up. The
XJ parameter word to read the EXPORT flass
(W.INSAF) is set up for subroutine CHKEXP2. A
field length request is made to reduce the field
length to the run time field length.

4.1.10 DEBUG QPTIONS

There are three MANAGER debug options. TRACE. TRAP, and
BID.

4.2 MAN

4.2.1

4,1.10.1

4.1.10.2

4.1.10.3

6SM no. 135.1
Page 42

IRACE

TRACE dayfiles trace messages for selected
users. A trace message is in the form:

XX MESSAGE.
where XX is decimal user number.
Trace messages are issued by the TRACE macro.

Currently, trace messages can be issued at the
exit to every new processing state, as each
incoming protocol record is processed, and
requesting and releasing a 7/32 FET.

Trace messages for user N are reouested by
setting bit N of word RA+3 of MANAGER's field
length. Trace can be operated during
production, but issuing dayfile messaces does
slow MANAGER down.

TRACE is controlled by the TRACE$ assembly
option which is currently assembled on.

IRAR

TRAP is a user requested breakpoint which is -
meant to be used in conjunction with DIS when
debugeing MANAGER at the console. The TRAP
macro plants a trap. The BKP. switch controls
whether the trap's default is on or off.

TRAP is under control of the IFTRAP assembly
option, which is currently assembled off.

EID

The BID$ assembly option invokes code which
allows MANAGER to be debumgged interactively
using the BID package. This option is currently
assembled off.

OVERALL OPERATION
When MANAGER starts, it calls MAN function §

(initialization). This function will set up low core and

4.2.2

6SM no. 135.1
Page 43

the control point area of MANAGER as needed. It also
starts MAN function 6 in the delay stack on a 5 second
recall. :

While MANAGER is runnine, MAN function 6 bounces everv 5
seconds. Its sole function is to control MISTICZ2
idledown. When MANAGER is dropped or aborted. MAN
function 6 initiates MISTIC2 idledown. and then ensures
that MANAGER remains at a control point until all MISTIC2
jobs are cleared out of the system and all front end
output files are returned to ECS.

MANAGER calls MAN function 7 when it wants an output job
to send to the 7/32 for printing.

If MANAGER needs to evict an output file or to return an
output file to ECS, it calls MAN function 8.

When a new user logs in, MAN function 2 is called by
MANAGER to create a pool table pocket entry for the new
Job.

In the normal course of running an interactive job.
MANAGER calls upon functions 1, 2. and 4. Function 1
starts a job executing a set of control cards which the
user has entered. These have been moved to the job's ECS
resident control point area by MANAGER.

Function 2 will abort an executing user job by setting
the appropriate error flag in the pool table or job
control point area.

Function 4 is called by MANAGER to wake up a job which is
swapped out waiting for input. output. or a Front End
command reply. MANAGER is informed by the 7/32 that the
terminal has input, needs output, or has just processed a
Front End command. If the job is waitine for one of
these conditions. function 4 is called. which clears the
wait state in the pool table pocket, thus restartine the

Job.

FUNCTION 1 - START UP A JOB

Function 1 initiates a user's control card record.

The first control card is read from the user's swapped
out control point area in ECS. Function 1 determines if
the control card needs special processing., either a 1AJ
internal function or EDITOR which gets a higher job
weight. Function 1 sets the initial swap-in field
length, based on the control card from ECS and what
libraries the user has defined in the control point area.

4.2.3

4.2.4

4.2.5

6SM no. 135.1
Page U4

Checks are made to ensure the job has not exceeded its
file or time limits.

If no errors were found, then the job's TTYTTY file is
moved from MANAGER's control point to the user's. The
Job's pool pocket is set up for execution.

Note that the ECS and user table buffers for function 1
overlay the rest of MAN's functions.

EUNCTION 2 - ADORT A JOB

Function 2 is =iven a user number and an error flag.
From the user number. MAN finds the job's pool pocket.

If the job is swapped out waiting command (WT.CMD). MAN
sets the error flag in the pool pocket and sets the
swap-in field length to 200B. The small field lensth
will provide a aquicker abort.

If the job is swappped in. MAN sets the control point
error flag. ’

If the job is swapping, MAN delays and checks the swap
state again until the job is either swapped in or out.

FUNCTION 3 - CREATE A PQOL POCKET
Function 3 finds an empty pool pocket for a new user.

It gets a pool id from MTR (M.SEQ). Function 3 then
scans the pool ensuring this user now has a unique pool
id and user number. If the pool id is not unique., MAN"
Just requests another id and repeats the scan.

If the user number is not unique, MAN returns an error to
MANAGER.

Subroutine EIPOOL is called to setup the pool vocket.
Subroutine UPUTBL updates the user table with the pool
pocket ordinal. Subroutine F3INST is called to process
any instrumentation.

FUNCTION 4 - RESTART A JQB

Function 4 will free a job which has been waiting output
(WT.O0UT), input (WT,.IN), or Front End command (WT.FEC).

Subroutine FREEJOB is called to free the job. An error
is returned to MANAGER if the job was not waiting.
Subroutine INST is called to process instrumentation.

6SM no. 135.1
Page 45

4.2.6 FUNCTION 5 - INITIALIZE MANAGER

h.2.7

Function 5 first checks if MANAGER's RA is control point
zero's FL, i.e. there is no unassigned storage between
control point zero and MANAGER. If there is, function 5
will abort MANAGER. Otherwise, MANAGER's control point
could be moved. The pointer in low core to the user
table is an absolute address.

Function 5 sets the absolute address of the user table in
low core (P.INT1), the number of interactive users (also
in P.INT1). The MGROK and SSSRPY flags are set in P.INT.

MANAGER's job name is changed to MANAGER.

MAN function 6 is placed on the delay stack with a 5
second delay and MANAGER's original RA in its input
register.

FUNCTION 6 - MISTIC2 IDLE DOWN

Function 6 remains in the delay stack at MANAGER's
control point as long as MANAGER is running and is at its
original RA. :

If either an error flag is set or MANAGER has ended,
function 6 begins the idle down procedure.

First, the MGROK flag is cleared in P.INT. This signals
1RA to abort all running interactive jobs. When all have
disappeared, 1RA clears the SSSRPY flag (in P.INT).

Now that all MISTIC2 jobs are logged out, MAN function 6
will not be recalled again. Now the function turns its

. attention to clearing out front end outout files. It

begins by searching the CM FNT for output files at
MANAGER's control point. When one is found. function 6
examines it to see if it could be a front end output
file.

Function 6 starts the examination by calling subroutine
FNMATCH to search the CM FNT for another entry with the
same name., control point, and RBT pointer as the output
FNT entry in question. If a matching FNT entry is found.
function 6 verifies that it has a file type of local
(since a front end output file must have a local or
scratch-pad FNT entry and an output FNT entry). If no
matching FNT entry is found, or if the match is of the
wrong file type. function 6 assumes that the output FNT
doesn't belong to a front end output file, and it
continues to search the CM FNT for other output FNT
entries at MANAGER's control point.

4.2.8

6SM no. 135.1
Page U6

When function 6 is satisfied that it has found the two
FNT entries for a front end output file, it tries to set
the file busy by setting the complete bit in the local
FNT entry. If the file is already busy, function 6
checks the PP activity count at MANAGER's control point;
if it is the only PP active, it ignores the busy and
seizes the file. If other PPs are still running at the
control point, function 6 forgets about the FNT entries
it has found and begins its search of the CM FNT over
again. (Under normal circumstances, MAN function 8 will
be the only PP which could busy a front end output file.
When function 8 finishes with the file, it will delete
its FNT entries from CM; function 6 will then be able to
continue.)

If function 6 is able to busy the file, it calls
subroutine REQUEUE to return the output FNT entry to ECS.
Then it calls subroutine DELFNT to delete both FNT
entries from CM. Function 6 then continues to search the

CM FNT for more output FNT entries.

When function 6 has searched the entire CM FNT, it clears
P.INT1 in low core and W.CPFE in MANAGER's control point
area. Then it drops out.

MANAGER's control card record is set up to exit to a
DUMPFE control card which will dump the 7/32 whenever
MANAGER aborts.

MANAGER's original RA is kept in function 6's input
register. If MANAGER's control point has moved, then
routines which look at or modify the user table are
getting or clobbering other parts of core. Function 6
will adjust the absolute address of the user table in low
core and then abort MANAGER. .

MANAGER's control point will only move if an EDITLIB or a
PP interpret is being done. These should only hapoen
during system's time and not during production.

FUNCTION 7 - GET AN OQUTPUT JOB

Function 7 is part of the front-end batch print
subsystem. MANAGER calls it whenever it wants to print a
Job. 1In the call. MANAGER passes flags specifying which
printers the desired file can be printed on; a routing
character which identifies the source of the desired
file; and primary and secondary PRU limits.

fFirst, function 7 calls subroutine CALLISP with the
primary PRU limit as a parameter. CALLISP formats a call
to CP.LISP function GETO (unless the PRU limit is
infinite, in which case function GET is used) to search

4.2.9

6SM no. 135.1
Page AT

the ECS FNT entries for a desirable file; that is, one
that satisfies MANAGER's specifications. If no file
which is smaller than the primary PRU limit can be found,
function 7 calls CALLISP again with the secondary PRU
1imit. If no file smaller than the secondaary PRU limit
can be found, function 7 tells MANAGER that no file is
available and drops out.

If CALLISP found a suitable file, function 7 massamges the
FNT entry. First it changes the control ooint field so
that the file will be assigned to MANAGER's control
point. Next it sets the "nextjob" bit, so that if the
file is returned to ECS before it has finished printineg,
it will be one of the first jobs printed when printine
resumes. Then it copies the FNT entry twice: once into
the CM FNT. and once into MANAGER's field length. These
copies are referred to as 'verbatim" FNT entries.

Next function 7 creates a ‘“scratch-pad". or ‘local", FNT
entry for the same file by changing the file type to
#local", setting the scratch-pad bit and clearing the
rest of the APF pointer. and clearing the PN and password
ordinal fields and all of the third word of the FNT
entry. This scratch-pad FNT entry is then placed in the
CM FNT and its address is returned to MANAGER.

FUNCTION 8 - RELEASE AN OUTPUT QUEUE JOB

Function 8, which is also a part of the front-end batch
printer subsystem, is called by MANAGER whenever MANAGER
is no longer interested in a file. Function 8 can either
evict the file, if it was completely printed, or it can
return the file to ECS if its printing was interrupted.

In the call to function 8. MANAGER passes a file name.
the address of a scratch-pad FNT entrv for that file. a
new routing character for the file (if it is to be
returned to a different aueue than the one it came from),
and a code specifyineg whether the file is to be evicted
or returned to ECS.

Function 8 starts by checking to see if MANAGER's error
flag is set. If it is, function 8 quietly drops out,
since Function 6 will return any front-end output files
to ECS before letting MANAGER drop.

Function 8 proceeds to verify that the file name passed
in the call matches the file name in the scratch-pad FNT
entry. Then subroutine FNMATCH is called to find the
verbatim FNT entry for the file: the FNT entry with the
same name and RBT pointer, but with a file type of
“output”. If a verbatim FNT entry cannot be found for
the file, then function 8 aborts MANAGER.

6SM no. 135.1
Page U8

If a verbatim FNT entry is found, function 8 tries to set
the file busy by clearing the complete bit of the
scratch-pad FNT. (If the file is already busy, function
8 goes back to its beginnine., rechecks MANAGER's error
flag, and continues from there.)

Next function 8 must decide if it has been called to
evict the file or to return it to ECS. It checks a code
passed to it by MANAGER. For an evict request, function
8 calls subroutine RELCHN to evict the RBT chain. For a
requeue request, function 8 first checks to see if
MANAGER told it to send the file to a new queue; if
MANAGER did request a new queue, function 8 takes the
routing character for that aqueue and substitutes it for
the second character in the file name of the verbatim FNT
entry. Then function 8 calls subroutine REQUEUE. which
will create and place a CP.LISP call which will return
the FNT entry to ECS.

For both evict requests and requeue requesﬁs. function 8
completes its task by calling subroutine DELFNT to delete
both the scratch-pad and verbatim FNT entries from CM.

4.3 ERONT END COMMANDS

4.3.1

EER

FER is a Front End task PP, similar to SYS. Currently,
there is only one function.

Although there is only one function, the design of FER
will allow additional functions to be added easily. The
SFUNCTION” macro defines the beginning of a function. It
enters the address of the function into a function jump
table and qualifies the function. The functions must
appear in numeric order.

Front End related tasks which are too small to dedicate a
entire PP to, are the type of functions which should be
added to FER.

4.3.1.1 FUNCTION 1

Function 1 is used to transmit Front End
commands to from the 6500 to FREND.

FER reads the command from the user's field
length to its internal buffer. After ensuring a
valid request. FER builds and enters a stack
request to issue the Front End command.

6SM no. 135.1
Page U9

FER swaps the job out (WT.FEC) with FER in the
delay stack. After MANAGER receives the Front
End command reply from the 7/32, it moves the
error code to the user's swapped out control
point area and frees the job. FER senses this is
the second portion of processing because the
internal bit is set. FER will move the reoly
from the control point area to the user's
parameter word and sets the complete bit.

4.3.2 FECMD CONTROL CARD
The command is translated by FECMD to ASCII because of
problems transmitting the percent character in display
code (it is a rubout when output'ed).

FER is called in to send the command to FREND.

If the error return from FREND is non-zero, FECMD issues
an appropriate error message and aborts.

Whenever an Front End command error code (EC.XXX) is
added to FESYM and FREND, it must also be added to FECMD.

FECMD error messages are generated by the ERRMSG macro.
All Front End command errors are of the form:

FECMD ERROR - XXXXXXXX
where XXXXXXXX is an English explanation of the error.
The ERRMSG macro call is as follows:

ERRMSG ERRNUM, TEXT

where ERRNUM is the XXX portion of the EC.XXX error code
and TEXT is the appropriate error message.

ERRADD is a table of error message addresses. indexed by
the EC.XXX error number. ERRMSG enters the address of
the message into this table and then generates the
message.

To add another error message it is necessary only to add
another call to ERRMSG.

4.3.3 FECMD FORTRAN CALLABLE FUNCTION

FECMD builds the parameter word in a local buffer and
moves the command there. It calls FER to issue the Front
End command.

4.y

4.3.4

6SM no. 135.1
Page 50

FER returns the Front End command error code to the
parameter word. FECMD converts the inteser error code to
type real and returns it to the caller.

EECMD USER_MACROS

The FECMD macros are straight forward. Since the caller
must set up the FER parameter word, the macros must just
issue the FER call for function 1 with recall.

SETCODE

Control card callable, FORTRAN callable, and macros were written
to issue SETCODE functions. The PP routine CON actually changes
the character code.

4.4.1

4.4.2

4.4.3

.44

CON_MODIFICATIONS

CON. first. checks if the call is for a disconnect, then
for a SETCODE and finally for a connect.

The SETCODE and connect paths are identical except
SETCODE does not change the device type to connected
(DT.CON).

SETCODE_CONTROL CARD

The syntax for the SETCODE control card is identical to
that of the CONNECT control card. SETCODE was added as a
second entry point in CONNECT. The existine code was
rearranged slightly into more subroutines, which CONNECT
and SETCODE share.

SETCODE FORTRAN CALLABLE SUBROUTINE

The SETCODE subroutine was added to the CONDIS deck on
the FTNLIB program library. This places SETCODE with
CONNEC and DISCONT subroutines. The syntax of SETCODE
and CONNEC is identical, so SETCODE is a small routine
which calls an existing CONNEC subroutine (DOPARM) to
crack the parameters and setup the CON parameter word.

SETCODE MACRQS

The SETCODE macros insert the specified character (if
present) into the the parameter word and issue the CON
call,

6SM no. 135.1
Page 51

4.5 SPQOLED INPUT/QUTPUT

MANAGER spools input to the user's TTYTTY file and then zives
the TTYTTY file to EDITOR if it consists of EDITOR text or to
SPOOL if it is input for READPT or TPREAD.

To spool output, a program writes on TTYTTY. MANAGER will then
list TTYTTY to the user's terminal after the program has
completed. WRITEPT, an entry point in SPOOL, will copy a file
to TTYTTY and cause it to be listed at the terminal in whatever
character code is specified on the control card.

READPT and TPREAD are MANAGER commands as well as SCOPE
commands. MANAGER recognizes the commands as a flag to start
spooling input. At the end of the input steam, MANAGER allows
the job's control card record to continue and SPOOL executes.
See sections 4.1.3.2 and 4.1.3.3 for full details of MANAGER's
spooling process. :

4.5.1 READPT

READPT is an entry point in SPOOL and accepts spooled
input on TTYTTY from MANAGER and copies to the specified
file.

Subroutine CHKLFN is called to verify the local file
name. If the NR parameter is not specified, the loecal
file is rewound. The comdeck routine CPY= is used to
copy from TTYTTY to the local file.

The CC option is used by MANAGER to determine the
character code of TTYTTY when it is used to spool
incoming lines for READPT.

y.5.2 TIPREAD

TPREAD is another entry point in SPOOL. It and READPT
(section 4.5.1) are the same routine in SPOOL. The
difference between the two is the manner MANAGER spools
the input to TTYTTY. MANAGER will issue READER.ON and
READER.OFF Front End commands at the beginning and the
end of the TPREAD svooling process.

Subroutine CHKLFN is called to verify the local file
name. If the NR parameter is not specified. the local
file is rewound. The comdeck routine CPY= is used to
copy from TTYTTY to the local file.

The CC option is used by MANAGER to determine the
character code of TTYTTY when it is used to spool
incoming lines for TPREAD.

6SM no. 135.1
Page 52

4.5.3 MWRITEPT

4.6 MSQ

WRITEPT is another entry point in SPOOL. It shares
subroutines with TPREAD and READPT.

Subroutine CHKLFN is called to validate the local file
name. Subroutine FNDCC is called to validate the
character code. SETCC sets the character code in TTYTTY.
If the no rewind parameter was not specified, the local
file is rewound. The comdeck routine CPY= is used to
copy the local file to TTYTTY.

MANAGER will then list the TTYTTY file to the user's
terminal using the specified character code.

Since most of MSO dealt with finding and manipulating user
output .and backup buffers, it was decided to reseguence and move
MSO to the SCOPE program library. Almost all of MSO was
rewritten for the Front End project.

4.6.1

QVERALL FLOW

All subroutines are designed to exit with the accumulator
set to non-zero if a fatal error occurred. The
subroutine is responsible for issuinz the error messacze.
If no errors were found. the accumulator is set to zero.

MSO determines the type of call (user. MSG with recall or
MSG without recall) this is. Subroutines USRCALL
(section 4.6.3). MSGW (section 4.6.2) and MSGWO (section
4.6.2) handle the individual calline seauences and
parameter processing. Each returns to the main routine
with the message in MSO's buffer. the character count,
the receiver's user number, and the character code of the
message.

The stack request is built and issued. Subroutine RECALL
is called to process any stack request errors. The only
legitimate error is no room in port". Anv other is a
Front End dead. which causes MSO to drop out so that
MANAGER may reinitialize.

Subroutine SWOOUT is called to recall the job if there is
no room for the message in the user's 7/32 port.

If the request is not a refusable request., MSO swaps the
Job out waiting output (WT.OUT) on that port. with MSO in
the delay stack.

If the reauest was a refusable request., MSO will swap out

4.6.2

4.6.3

6SM no. 135.1
Page 53

waiting time (WT.TIME) up to 2 times. Each time it
bounces in, MSO will retry the request. After it has
exhausted its bounce limit, it returns an error to the
caller indicating the receiver was busy.

MSG CALL PROCESSING

Subroutine MSGWO validates the address of the messaze for
the MSG call without recall and sets the direct cell
MESSADD to it. MSGCALL is then, called to do the
processing.

Subroutine MSGW validates the parameter word address and
then the message address for the MSG call with recall.
Again, MESSADD is set to the address of the message and
subroutine MSGCALL is called to process the request.

Subroutine MSGCALL performs the usual validation of the
message. Since MSG does not supply a character count,
MSGCALL must determine it.

The message is at most 8 words long or until the end of
the field length. MSGCALL must find the terminating zero
byte and then strip off trailing blanks. In addition.
MSGCALL prefixes the messsage with 2 blanks (for carriage
control).

The port of the receiver is found in the control point
area.

Only 0ld Mistic messages are permitted.

The bulk of this subroutine is taken directly from the
original MSO.

CPU CALL PROCESSING

Subroutine USRCALL processes user calls. All parameters
are validated. Refusable calls and calls to other users
are restricted to system library routines.

There are two special character counts left over from the
previous interactive subsystem. If SC.ONBS (3773B) is
the character count. then the backspace function should
be turned on. If SC.OFBS (3774B) is the character count,
the backspace function should be turned off. These were
left in MSO due to problems with APL which uses them.
Subroutines ONBKSP and OFFBKSP move the appropriate Front
End command to the buffer as though it were a usger
message and set the Front End command bit in the stack
request.

4.7

4.6.4

MSX

6SM no. 135.1
Page 54

Subroutine READMSG determines the number of CM words in
the message from the character count and character tvope.
ASCII messazes are packed 5 character per CM word and Old
Mistic 10 characters per CM word. The message is read to
the buffer.

ERONT END COMMANDS

MSO will issue two Front End commands. One to turn the

backspace function off and one to turn it back on. This
was left in MSO for a version of APL which recquired it.

For more detalls see section 4.6.4.

The bulk of MSX dealt with findineg and manipulating user output
and backup buffers. Since that had to be changed. it was
decided to resequence and move MSX to the SCOPE orosram
libirary. Almost everything was rewritten except the tables of
error messages.

4.7.1

OVERALL _FLOW

All subroutines are designed to exit with the accumulator
set to non-zero if a fatal error occurred. The
subroutine is responsible for issuing the error message.
If no errors were found, the accumulator is set to zero.

Subroutine VALDATE is called to validate the call. If no
errors were found, MOVEMSG is called to move the correct
message from the error message table to the buffer. For
mode errors, the P register is inserted in the messacge.

MOVEMSG calls MODERR, IOERR, ESDPERR. or NORMERR
(depending on the type of error) to locate the correct
error message and insert the P register when necessary
for each of the different types of errors. See sections
4.7.3 through 4.7.6 for more details about the individual
error message processors. Subroutine MOVEBUF then moves
the error message to the buffer.

The stack reaquest is build and issued. Subroutine
ERRPROC deals with stack request errors. The only
acceptable error is “no room in port"., MSX will swap the
Job out waiting output (WT.OUT). Otherwise, the Front
End is assumed to be inoperative. MSX will then, drop
out and allow the interactive service to complete its
idle down procedures and be reinitialized.

6SM no. 135.1
Page 55

4.7.2 ERROR_MESSAGE TABLE STRUCTURES

Basically, there is a table of address of error messages
at MSGTAB. The error number is used to index into the
table to find the correct error message.

The MESSAGE macro is used to generate entries in MSGTAB
and then the messages. MSGTAB is in a USE block called
TAB. The messages are generated in the program block.

The format of the MESSAGE call is as follows:
LABEL MESSAGE ERRSYM, TEXT

where LABEL is the address of a predefined message (if
specified it will be entered in MSGTAB),

ERRSYM is the error's index into MSGTAB,

and TEXT is the error message.

The set symbol LTAB is the last entry in MSGTAB so far
and is updated by MESSAGE. It is used by the other
message generating macros to determine the next available
entry in MSGTAB.

The normal error messages are generated with the MESSAGE
macro and must be defined before any 1/0, CP4ES/6DP, or
MSX internal messages because the F.ERXX error number is
used directly to index into the message table.

The internal error messages are next. These are the
specific messages for mode 1, mode 2, and mode 4 errors.
They are generated with the INTMESS macro (call follows).

INTMESS SYMB, TEXT

where F.SYMB will be defined as the offset for the error
message and TEXT is the message.

The 1/0 messages are next. The beginning of this section
is defined with a symbol STIOM which is used by
subroutine IOERR as the base of the I/0 error entries.
The macro IOMESS (call follows) is used to generate the
entries and messages.

IOMESS TEXT
where TEXT is the messaze.

IOMESS also calls the MESSAGE macro. The error are added
one by one to the end of the MSGTAB table. There are no
symbols defined for the secondary error numbers. New I1I/0
errors should be added to the end of the I/0 error

4.7.3

4.7.4

4.7.5

6SM no. 135.1
Page 56

message section. The same message must be added to 6WM
(the batch error message processor).

The CPUES/6DP errors follow. They are defined with the
ESMES macro (call follows).

ESMES TEXT

where text is the error message. The ESMES macro is the
same as the IOMES macro. The names are different to
emphasize these are two distinct subsets of messages.

Like the I/0 error section, the CPYUES/6DP section begins
with a base symbol. STESM (which is used by subroutine
ESDPERR). There are no symbols defined for the secondary
error number. New error messages should be added to the
end of the CPUES/6DP message section. The same message
must be added to 6DP (the batch error message processor).

NORMAL,_ERROR PRQCESSING

Subroutine NORMERR is called to process normal errors.
These are the standard F.ERRXX errors (except for
F.ERAR). .

The error number is the offset in MSGTAB which contains
the address of the error message.

The P register is inserted into the program stop or exec
call error message if needed.

MODE ERRQR _PROCESSING

Subréutine MODEERR is called to process mode errors.

Mode errors 1, 2. and 4 have their own internal messaeces.
Other mode errors have a general mode error message. The
P register is inserted in the correct error message.

The offset of the error message in MSGTAB is returned to
the caller.

I/Q0 ERROR_PROCESSING

Subroutine IOERR processes the 1/0 errors. These have
F.ERIO as their primary error number. The offset in
MSGTAB is the secondary error number + 1 + STIOM (the
base of the I/0 errors).

There is no special processing involved.

6SM no. 135.1
Page 57

4.7.6 CP4ES ERROR_PROCESSING

Subroutine ESDPERR processes the CPUES/6DP errors. These
have E.6DES as the primary error number.

The offset in MSGTAB is the secondary error number + 1 +
STESM (the base of the CPUES/6DP MESSAGES).

There is no special processing involved.

4.8 MINQR _MODIFICATIONS

This section deals with minor modifications to several existing
routines on the system.

4.8.1 CON
4.8.1.1 SETCODE modifications
SETCODE modifications are described in séction
4 4.1,
4.8.1.2 Other Modifications
CON was modified to allow console jobs to
connect files. This was needed so that MANAGER,
ARGUS, DUMPFE, and the stimulator could
communicated with FREND over connected files.
The new connected file type AF and BI were added
to the table of valid connect types in CON.
4.8.2 LOGOUT
LOGOUT was modified to accept a DIS parameter which
indicates the user is being logged out after a disconnect
has occurred. An end-of-file status is used to indicate
the user has disconnected during the logout process.
4.8.3 SSS

SSS was modified to move the Front End port number to the
control point area upon swap out.

4.8.4

4.8.5

4.8.6

4.8.8

6SM no. 135.1
Page 58

SEND/MESSAGE

SEND and MESSAGE were modified. first not to call the PP
program MSI in to read input from the user's input
buffer. They now use connected files to read user input.

Under previous systems. a user could swap out waiting
output to complete on another user's terminal by
'SEND"ing to her. Because of changes to the method of
freeing jobs which are swapped out waitine output, a user
could hang. SEND and MESSAGE were modified to user a
refusable MSO call, which will not swap the caller out.
Instead, MSO will return an error and SEND and MESSAGE
will inform the sender that the other terminal is busy
now.

See appendices 1 and 2 to 6SM 77.0, SEND and appendices 1
and 2 to 6SM 81.0. MESSAGE for more details.

LOGIN

LOGIN was modified to dayfile the user number, the
sequence number., the Front End socket and port numbers.
and the pool id of the MISTIC job after logging in.

The sequence and line number message, which LOGIN prints
at the user's terminal, was changed to include the Front
End socket and port numbers.

SITUATE

SITUATE was modified to print the Front End socket and
port numbers in addition to the line number, sequence
number and user id which SITUATE has previously printed
for the operator. The SITUATE user output remained the
same (only a list of user ids).

See appendix 1 to 6SM 80.0, SITUATE, for more details.

EDITOR

EDITOR was modified to recognize a standard SCOPE TTYTTY
input file. Previously, the TTYTTY input file contained
a character count followed by the text line. The lencth
of an interactive line (L.TTYLEN) was changed from 7 to
16. This causes EDITOR to output full length text lines.
The Front End command RMARGIN, is used to determine if
and where the line should be folded at the terminal.

See appendices 1 and 2 to 6SM 91 for more details.

6SM no. 135.1
Page 59

4.8.9 MISTIC PP'S

4.8.9.1

4.8.9.2

4.8.9.3

INTCOM

The MISTIC PPU routines call a common deck,
INTCOM, which contains useful macros. These
macros were modified to not refer to the input
and output buffers and P.SHA2 which were removed
from the "6500" and moved to the "7/32%,

IBL

The code in TBL which allowed a system routine
to read a copy of a user's input and output
buffers in MANAGER was deleted. Approoriate
error messages are dayfiled instead.

DELETED ROUTINES

MMM, MMS, 1BR, 2TT. and MSI were removed from
the system.

MSO and MSX were resequenced and moved to the
SCOPE program library. See sections 4.6 and 4.7
for details.

4.8.10 OTHER ROUTINES MODIFIED FOR BATCH PRINIERS

4.8.10.1

IRCP. CMR

Subroutine PUTIO. which occurs in slightly
different forms in both IRCP and CMR. was
modified to process new disposition codes for
the printers. PUTIO is a function in CE.LISP,
which puts a file in the correct 1I/0 queue and
column, based on its file type and disposition
code.

Printer disposition codes are now as follows:
PR 40B print on any available printer

PAU 41B vprint on b6l-character front-end
printer

PAF T73B print on 96-character front-end
printer

4.8.10.2

4.8.10.3

4.8.10.4

4.8.10.5

4.8.10.6

4.8.10.6

6SM no. 135.1
Page 60

PA T4B print on any front-end (ASCII)
printer

PUTIO now recognizes all these codes as printer
codes.

DISPOSE

DISPOSE was modified to create print files in
the new dispositions. as described in section
4.8.10.1.

FNT. 6DP

These routines were both modified to use the
CE.LISP function PUTIO to put output files in
ECS, instead of PUT. 6DP was also modified to
change the obsolete disposition code 42B (P2) to
40B (PR).

QDR

QDR was modified in the way it retrieves output
files from ECS for dumping, so as to dump the
new PAF and PA files as print files.

1EJ

1EJ was modified to write an EOR on the output
file before the beginning of the dayfile. This
ensures that MANAGER can always find the dayfile
as the last record of a print file.

ARGUS AND 1AR

ARGUS and 1AR were modified to put ended or
page-limited jobs back in the "R" queue, as does
MANAGER.

1AR was modified to print all non-PA jobs on the
501 printers, since the old P1 disposition code
(41B) is now used for the front-end printers.

SYS

The FNTSTAT function was modified to use the FNT
address in the "FET" when locating the CM FNT
entry for the file. This is because MANAGER

6SM no. 135.1
Page 61

does FNTSTAT calls on its print files, which
each have 2 FNT entries. MANAGER uses the FNT
address field in the FET to ensure that the
local scratch-pad FNT entry is always used.
instead of the output FNT copy.

5.0 QPERATOR COMMUNICATIONS AND PROCEDURES

5.1 MANAGER PROCEDURES

5.1.1

MANAGER CONTROQL CARD OPTIONS

Both control card options deal with the 7/32 load
procedure. Normally, MANAGER will automatically load the
correct FREND system.

The option *NOLOAD" will prevent MANAGER from attempting
to load the 7/32.

The option %PFN=XXXX" (where XXX is the permanent file
name of a FREND system) will cause MANAGER to load the
specified FREND system.

MANAGER will always dayfile a FREND identification
message which which includes the version number. date and
time of assembly of the FREND system MANAGER has just
loaded into the 7/32.

MISTIC2 TERMINATION

To terminate interactive service, the operator should
type
1. CFO LOGOUT

which will cause MANAGER to send termination messages to
all users and begin the idle down sequence.

SYSTEM_TROUBLE_ MESSAGES

MANAGER no longer acceots "CFO“S from the operator as a
system trouble message. To send a global trouble
message. the operator should use the Front End command
SENDALL. See the FREND Operator's Guide for complete
details.

6.0

7.0

6SM no. 135.1
Page 62

5.2 SITUATE_CHANGES

The Front End socket and vport numbers were added to information
SITUATE outputs for the operator. The format is as follows:

LINE -~ SOCKET - PORT - SEQUENCE NUMBER - USER ID

USER_ASPECTS

The new features FECMD. SETCODE, and WRITEPT were added. The
capibilites of READPT and TPREAD were expanded to allow input
spooling in any of four character codes.

Many outstanding problems with the previous interactive subsystem
were solved.

These changes were necessary to install the 7/32 Front End system.

DAYFILE CHANGES -

7.1 LOGIN

USER XXX - SSXXXXX - S XXX - P XXX - POOL-ID XX
Issued by LOGIN when a user successfully logs in.
USER is the MANAGER user number,

S is the Front End socket number, and
P is the Front End port number.

7.2 IBL
TBL - INPUT BUFFER ACCESS SUPPORT DROPPED

Issued by TBL when a request is made to access the input
buffers which previously resided in MANAGER.

TBL - OUTPUT BUFFER ACCESS SUPPORT DROPPED

Issued by TBL when a reauest is made to access the output
buffers which previously resided in MANAGER.

7.3 M3Q

MSO - USER NOT LOGGED IN

7.4

7.5

6SM no. 135.1
Page 63

Detected by MSO when requested to transmit a message to a
user who 1s not logged in.

SPOOL
READPT/TPREAD/WRITEPT FAILURE

Issued by SPOOL when it has failed to copy to end of
information.

INVALID FILE NAME - XXXXXX

Issued by SPOOL when an invalid file name is specified.
-XXXXXXX- is the file name.

WRITEPT - INVALID CHARACTER CODE - CC

Issued by SPOOL when an invalid character code is specified
on a WRITEPT call. CC is the character code.

WRITEPT - SYSTEM ERROR., CANNOT SET CHARACTER CODE

Issued by SPOOL when WRITEPT encounters an error while
attempting to set the character code.

FECMD
FECMD ERROR ~ UNRECOGNIZED COMMAND

Issued by FECMD when the Front End command is not
recognized by the 7/32.

FECMD ERROR - INVALID KEYWORD

Issued by FECMD when the Front End command contains an
invalid keyword.

FECMD ERROR - UNSUPPORTED CHARDEF CHARACTER

Issued by FECMD when the Front End command contains an
unsupported chardef character.

FECMD ERROR - UNSUPPORTED CHARDEF FUNCTION

Issued by FECMD when the Front End command contains an
unsupported chardef function.

FECMD ERROR - PARAMETER MUST BE ON OR OFF

Issued by FECMD when the Front End command contains a

7.6

6SM no. 135.1
Page 6U4

parameter which must be on or off and is not.
FECMD ERROR - ILLEGAL TERMINAL TYPE

Issued by FECMD when the Front End command contains an
invalid terminal type.

FECMD ERROR - CHARACTER DELAY GT 256

Issued by FECMD when the Front End command contains a
character delay of 257 or more.

FECMD ERROR - UNAUTHORIZED COMMAND

Issued by FECMD when the user is not authorized to issue
the Front End command.

FECMD ERROR - VALUE MUST BE 1 TO 240

Issued by FECMD when the Front End command contains a
parameter value which should be between 1 and 240 and is
not.

FECMD ERROR - YOU HAVE ONLY 1 CONNECTION

Issued by FECMD when the Front End command attempts to
change connections and only 1 connection exists.

FECMD - NO FRONT END COMMAND SPECIFIED

Non-fatal error message issued by FECMD when no Front End
command was specified on the control card.

FECMD SYSTEM ERROR - UNKNOWN ERROR CODE

Issued by FECMD when the Front End when an unknown error-
code is returned by FER.

MANAGER
ATTEMPTED AUTO LOAD OF NON-PRODUCTION FREND SYSTEM

Issued by MANAGER when it discovers it is trving to load a
non-production FREND system during its automatic load
sequence.

FREND SYSTEM - VER NNNN DDDDDDDDDDTTTTTTTTTT

where NNNN is the FREND version number
DDDDDDDDDD is the date of assembly of the FREND
system
TTTTTTTTTT is the time of assembly of the FREND

7.7

7.8

6SM no. 135.1
Page 65

system
Issued by MANAGER to identify the FREND system, MANAGER is
loading into the 7/32.
7/32 HAS DIED

Issued by MANAGER after 1FP has set MANAGER's control ports
complete, indicating the 7/32 system has died.

FRONT-END TURNED OFF

Issued by MANAGER when it dies, due to the front-end beinz
turned off in the EST.

OPEN REJECTED BY MANAGER

Issued by MANAGER when the 7/32 requests an open and there
are no available MISTIC pool pockets.

CONTROL PORT MESSAGE FOR USER NOT LOGGED IN, FP = XXX
Issued by MANAGER when it receives a control port message
for a user who is not logged in. XXX is the numeric
protocol record type.

MANAGER - CONTROL CARD ERROR

Issued by MANAGER when it does not recognize a control card
parameter.

MSX

MSX - FRONT END DEAD
Occurs when MSX receives an error return other than port
full after attempting to send an error message to an
interactive user.

MSX - MAXIMUM NUMBER OF USERS IS ZERO

MSX has found the low core cell which holds the maximum
number of interactive users to be zero.)

FER
FER - UNDEFINED FUNCTION NUMBER

FER was called for other than function 1.

FER - MUST BE CALLED WITH AUTO-RECALL

7.9

6SM no. 135.1
Page 66

FER was called without auto-recall.
FER - CALLED BY NON-MISTIC JOB

FER called by a non-interactive job.
FER - PARAMETER WORD NOT IN FIELD LENGTH

FER was called with the address of its parameter word
outside the job field length.

FER - PORT NUMBER IS ZERO
This is a system error.
FER(1) - COMMAND NOT ENTIRELY IN FIELD LENGTH

The command passed to FER did not lie entirely within the
Job field length.

FER(1) - COMMAND LENGTH IS ZERO
The length of the command passed to FER is zero.

FER(1) - COMMAND LENGTH IS TOO LARGE

The length of the command passed to FER is areater than 240
characters.

FER(1) - UNDEFINED CONNECT TYPE XX

XX is the connect code which the user specified for a
front-end command. The code is other than OM, AS. AF. or

BI.

MAN
MAN(5) - FL VIOLATION

Issued by MAN function 5 (initialization) when its
parameters are not within MANAGER's field length.

MAN(5) - UNASSIGNED STORAGE BEFORE MANAGER

Issued by MAN function 5 (initialization) when unassigned
storage exists between MANAGER and control point zero.

MAN(6) - ILLEGAL CALL

Issued by MAN function 6 when called without the internal
bit set.

6SM no. 135.1
Page 67

MAN(6) - MANAGER HAS MOVED

Issued by MAN function 6 when it discovers MANAGER's
control point has moved. This will only occur when an
EDITLIB or a PP interpret has been initiated.

MAN - ILLEGAL CALL

Issued by MAN when called by any one other than MANAGER.
XXIIFFFFWWWWMMMM

Instrumentation messages issued by MAN when freeing a job
in the pool.

XX = the 2 letter message code

XC - job freed after waiting command

IN - job freed after waiting for user input

OU - job freed after waiting for user output

SP - job freed waiting after user output spool

FC - job freed after waiting front-end command

II = the HUSTLER pool table id in display code

FFFF = octal job requested field length
WWWW = octal initial job weight (bottom 6 bits of 12)
MMMM = octal 12 bit millisecond clock/100B

NJXX LINENNNN

Instrumentation messagze issued by MAN when creatinz a pool
pocket for a new MISTIC job.

XX = the pool id of the new job

NNNN = the user number of the new job

MAN ERROR - USER XXXX DUPLICATE USER
Issued by MAN when it discovers two jobs with the same user
number.
XXXX = the duplicate user number

MAN ERROR - USER XXXX NO ROOM FOR POCKET
Issued by MAN when called in to create a pool pocket for a
Job and there were no free pockets.
XXXX = the user number of the job involved

MAN ERROR - USER XXXX JOB NOT WAITING
Issued by MAN when called in to free a job which was
suppose to be waiting input. output, spool, or Front End
command and was not.
XXXX = the jobs user number

MAN(6) -~ OUTPUT FNT HUNG BUSY

Issued when MAN function 6., on discovering that it is the

6SM no. 135.1
Page 68

only PP at MANAGER's control point, ignores the fact that
the complete bit is not set in the FET and seizes the file.

MAN(7) - ECS ERRORS

Occurs when MAN function 7 detects ECS errors when trying
to retrieve a front end output file.

MAN(7) = NO FNT SPACE

Occurs when MAN function 7 cannot find a free slot in the
file name table, and MANAGER has died.

MAN(7) - INVALID PRINT CODE
Occurs when MAN function 7 is passed an invalid code by
MANAGER. Currently the only legal code requests a print
file to be retrieved from ECS.

MAN(7) - PRU LIMIT TOO LARGE

Occurs when MANAGER passes a PRU limit which is too laree
to be legal to MAN function T.

MAN(7) - ADDRESS WAS VALID LAST TIME
Occurs when MAN function 7 detects a bounds error when
trying to rewrite a status word in MANAGER's field length.
after failing to find a reguested file.

MAN(7) - ADDRESS WAS GOOD LAST TIME
Occurs when MAN function 7 detects a bounds error when
trying to rewrite a status word in MANAGER's field length,
after successfully finding a requested file.

MAN(7) - ADDRESS WAS IN RANGE ULAST TIME

Occurs when MAN function 7 detects a bounds error when
trying to copy a FNT entry to MANAGER's field length.

MAN(8) - FILE NAMES DO NOT MATCH

Ocecurs when the file name passed to MAN function 8 does not
match the name of the FNT whose address is passed.

MAN(8) - MATCHING FNT NOT FOUND
MAN function 8 dayfiles this message when it cannot find a
FNT entry with the same name, RBT pointer and control voint
as the FNT entry passed to it by MANAGER.

MAN(8) - ADDRESS WAS GOOD LAST TIME

6SM no. 135.1
Page 69

Occurs if MAN function 8 gets a bounds error when rewriting
a status word in MANAGER's field length.

7.10 CONNECT/SETCODE
INVALID FILE NAME---XXXXXXX
Issued by CONNECT and SETCODE when either detects an
invalid file name specified on their control cards.
XXXXXXX is the file name.
INVALID TYPE CODE---CC

Issued by CONNECT and SETCODE when either detects an
invalid character code on their control cards.
CC is the character code.

8.0 REFERENCES
Software Modification Proposals:
28 - Front End
41 - Front End Phase 1 Detail
60 - Front End Command and Control
Other 6000 Scope Memos:
60.2 - HUSTLER 2.0
77.0 - SEND. appendices 1 and 2
80.0 - SITUATE, appendix 1
81.0 - MESSAGE, appendices 1 and 2
91.1 -~ EDITOR. appendices 1 and 2
94.1 - Banner Messages
124.0 - Frend _
134.0 - 1FP and friends
©131.0 - Merit Network Support
CDC publications:
Internal Maintenance Specification, INTERCOM 1
Operator Guides

FREND Operator's Guide

WRITTEN BY A/\'\ K_ QB‘V\M‘

John K. Renwick

APPROVED BYMM
: Richard R. Moore

There s no page /O

SECTION

SECTION MAP

1.0 INTRODUCTION

2.0 EXTERNAL REFERENCE SPECIFICATIONS

2.1
2.2

2.3

2.4

2.5

2.6

2.7

MANAGER COMMANDS
MAN FUNCTIONS

FRONT END COMMANDS

2.3.1 FER

2.3.2 FECMD CONTROL CARD
2.3.3 FECMD FORTRAN FUNCTION
2.3.4 FECMD MACROS

SETCODE |

2.4.1 CON CALLING SEQUENCE
2.4.2 SETCODE CONTROL CARD
2.4.3 SETCODE FORTRAN FUNCTION
2.4.4 SETCODE MACROS

SPOOLED INPUT/OUTPUT

2.5.1 READPT

2.5.2 TPREAD

2.5.3 WRITEPT

MSO CALLING SEQUENCES

2.6.1 USER CALL

2.6.2 MSG CALL WITH RECALL
2.6.3 MSG CALL WITHOUT RECALL
MSX CALLING SEQUENCES

2.7.1 NORMAL ERRORS

2.7.2 MODE ERRORS

6SM no. 135.1
gaze (A

BAGE

EOFEEFE W W

.o o o (&) (%)) (8] (8]

[TN)}

© o O =N =

SECTION
SYSTEM PROGRAMMING CONSIDERATIONS

3.0

4.0

3.1 INSTALLATION

3.2 SYSTEM TABLES

3.2.1 LOW CORE

SECTION MAP

3.2.2 MANAGER TABLES

INTERNAL REFERENCE SPECIFICATIONS

4.1 MANAGER
4.,1.1 TABLES
k1.1
4.1.1.2
4,1.1.3
ho1.1.4
4.1.1.5
4.1.1.6
k11,7
4.1.1.8

4.1.1.9

4.1.2 MAIN LOOP

4.1.2.1

4.1.2.2 DISK I/0 PROCESSING
4.1.2.3 EXPORT PROCESSING

4.1.2.4 CLOCK AND COUNTERS

4.1.2.5

STATUS
AUXSTAT
AUXSTAT2
PRGCOM
USER TABLE
PRSTAT
PRSTAT2
PRFILE

DFWRD

CONTROL PORT PROCESSING

CFO PROCESSING

4.1.3 USER PROCESSING STATES

4.1.3.1

SERV, WAITIN. DOSERV, AND STASH

6SM no. 135.1
Page T2

RAGE

10
10
10
12
12
14
15
17
18
19
20
21
21
21
22
22
24
24
24
24
25

25

SECTION

SECTION MAP

6SM no. 135.1
Page 73

BAGE

4,1.3.2 MGRCC, NEXTC, COMR2, COMR3. GOJOB, AND €M 26

4.1.3.3 ACTIVE

4,1.3.4 LIST, PRELST. LISTTY, AND ENDLST

PRINTER PROCESSING STATES

4.1.4.1

4.1.4.2

4.1.4.3

ho1.4.4

4.1.4.5

4.1.4.6

PRINTER TURNED OFF
IDLE PRINTER STATES
IDLEPR
GETO
WAITPR
DAYFILE POSITIONING STATES
PREDF1
PREDF2
PREDF3
PREDFU
NORMAL PRINTING STATES
PRINT
BL2FE
CKDAYF
ENDBL
END OF PRINT JOB STATES
PREOI
PRINT
COPY
PRINT FILE SKIPPING

PRINT

26
27
28
28
28
28
28
28
29
29
29
29
29
30
30
30
3
31
32
32
32
33
33
33

4.2

6SM no. 135.1

Page
SECTION MAP

PAGE
ENDDSK 33
4.1.4.7 ABNORMAL PRINT JOB TERMINATIONS 33

PRINT 3y

4.1.5 PRINTER FILE HANDLING 34
4.1.5.1 DISK FILE FNTS 34
4.1.5.2 PRINTER FET AND BUFFER MANAGEMENT 35
4.1.6 ECS USAGE 35
4.1.7 COMMUNICATION WITH FREND 36
4.1.7.1 CONTROL PORTS 36
4,1.7.2 DATA TRANSFER 38
4.1.7.2.1 INPUT 38

4.1.7.2.2 OQUTPUT 38

4.1.7.2.3 PRINTER OUTPUT 39
4.1.8 EXPORT PROCESSING Lo
4.1.9 INITIALIZATION 40
4,1.9.1 MANAGER INITIALIZATION 4o
4.1.9.2 FRONT END INITIALIZATION 40
4.1.9.3 EXPORT INITIALIZATION 41

4.1.10 DEBUG OPTIONS 41
4.1.10.1 TRACE 42
4.1.10.2 TRAP _ 42
4.1.10.3 BID 42
MAN 42
4.2.1 OVERALL OPERATION 42

4.2.2 FUNCTION 1 - START UP A JOB 43

T4

SECTION

4.3

4.4

4.5

4.6

y,

i

2.

.2

8

.9

SECTION MAP

FUNCTION 2 - ABORT A JOB
FUNCTION 3 - CREATE A POOL POCKET
FUNCTION Y4 - RESTART A JOB
FUNCTION 5 - INITIALIZE MANAGER
FUNCTION 6 - MISTIC2 IDLE DOWN
FUNCTION 7 - GET AN OUTPUT JOB

FUNCTION 8 - RELEASE AN OUTPUT QUEUE JOB

FRONT END COMMANDS

4.3.1

4.3.2

4.3.3
4.3.4

FER

4.3.1.1 FUNCTION 1

FECMD CONTROL CARD

FECMD FORTRAN CALLABLE FUNCTION

FECMD USER MACROS

SETCODE

4.u4.1

h.y.2

4.4.3

B4y

CON MODIFICATIONS
SETCODE CONTROL CARD
SETCODE FORTRAN CALLABLE SUBROUTINE

SETCODE MACROS

SPOOLED INPUT/OUTPUT

4.5.1

4.5.2

4.5.3

MSO

4.6.1

4.6.2

READPT
TPREAD

WRITEPT

OVERALL FLOW

MSG CALL PROCESSING

6SM no. 135.1
Paze 75

PAGE
1y
4y
4y
45
45
46
47
48
48
48
49
49
50
50
50
50
50
50
51
51
51
52
52
52
53

SECTION

5.0 OPERATOR COMMUNICATIONS AND PROCEDURES

5.

1

4.8.10.2
4.8.10.3
4.8.10.4
4.8.10.5
4.8.10.6

4.8.10.6

SECTION MAP

DISPOSE

FNT, 6DP

QDR

1EJ

ARGUS AND 1AR

SYS

MANAGER PROCEDURES

5.1.1 MANAGER CONTROL CARD OPTIONS

5.1.2 MISTIC2 TERMINATION

5.1.3 SYSTEM TROUBLE MESSAGES

5.2 SITUATE CHANGES

6.0 USER ASPECTS

7.0 DAYFILE CHANGES

7.

7

7.
7.

1

.2

9

LOGIN

TBL

MSO

SPOOL

FECMD

MANAGER

MSX

FER

MAN

10 CONNECT/SETCODE

8.0 REFERENCES

6SM no. 135.1

Page

PAGE
60
60
60
60
60
60
61
61
61
61
61
62
62
62
62
62
62
63
63
64
65
65
66
69
69

77

o
PL IDENT ROUTINE | Check one: MSU
SCOPE JKRASCMGR MANAGER ' MINI MANAGER changes to
SCOPE __ JKRMGRED MANAGER | & M4 No. MOD
MEMO support ASCII EDITOR
a Appendix q‘)(ﬁ
number __ 1 | Coded by: J. Renwick Chy
lnstalled in LSD _48.25, 49.37 to 6SM _135,1 Date: 11 [26 |79
YT,
1.0 DESCRIPTION (What was done; why; general effects; references.
MANAGER was modified to pass EDITOR commands and text to EDITOR in ASCII.

Conditionally assembled code supports three MANAGER commands to switch modes
between ASCII and Display-code. The default was originally set to Display, to
allow ASCII EDITOR development. When ASCII EDITOR was installed in LSD 49.37,
JKRMGRED changed the default to ASCII.

2.0 EXTERNAL CHANGES (Operational changes; changes affecting the rest of the
system.)

New MANAGER commands are:
ASEDTXT ~ Pass text to EDITOR in ASCII (Default)
ASEDCMD - Pass commands to EDITOR in ASCII (Default)
OMEDIT - Pass commands and text to EDITOR in Display-code.

MANAGER now writes TTYTTY entirely in ASCII unless OMEDIT is selected. EDITOR
commands in the control card buffer (except "EDITOR" and "END" cards) are in

ASCII unless OMEDIT is selected.

Dayfile & C.E. Error File Changes New symbols; Table Usage Changes
Two new bits in MANAGER's "AUXSTAT" tablq:
OMCMD - Display-code EDITOR commands

OMTXT - Display-code EDITOR text.

None

3.0 INTERNAL SPECIFICATIONS (How the change works.

Include cautions and assembly
options.)

State SERV reads &11 input from the terminal in AP (except for TPREAD and
READPT input). . . .
State DOSERV processes ASCII input, ignoring leading control characters and
blanks as it decides what the input is. Subroutine CMDSTASH translates any
non-EDITOR commands to Display-code, but puts EDITOR commands into the control-
card buffer in ASCII. :

State OUTNUM sends EDITOR line numbers to the terminal in ASCII for the "N"
command.

The new macro'"ASTODC" translates one character from ASCII to Display-code,
using the translate table at "ASDCTAB."

The new subroutine ADDNUM inserts an ASCII line number at the beginning of a
line of text. This is used by OUTNUM to generate the prompts, as well as
by STASH to add numbers to incoming text.

The new subroutine NXTCCH gets the next character from an ASCII line, and
translates it to Display-code.

*k% Use an M4 only if the information fits on it, and user changes are
insignificant. Final copy should be typed and printed., ¥#

Assembly option: If the symbol ASSW equals one, code is assembled to:

Process the ASEDTXT, ASEDCMD and OMEDIT commands. These commands
just set and clear the OMCMD and OMTXT bits in the AUXSTAT table;

‘Translate EDITOR commands to Display-code (in CMDSTASH) whenever
OMCMD=1;

Translate EDITOR text to Display-code in state STASH. This is done
by the new subroutine ASDC, which is conditionally assembled.

The ASSW option allows the pre-ASCII EDITOR to run, and can be turned
off whenever we no longer need to use the old EDITOR.

I’ believe éﬁat “my stood Hr
MSy Minc- Mod Memeo.,

mRR December 2003

